Synergistic effect of modulated electro-hyperthermia and doxorubicin in the treatment of an aggressive colorectal carcinoma in vitro

Author(s):  
Gertrud Forika
2020 ◽  
Vol 20 (6) ◽  
pp. 715-723
Author(s):  
Natarajan Nandakumar ◽  
Pushparathinam Gopinath ◽  
Jacob Gopas ◽  
Kannoth M. Muraleedharan

Background: The authors investigated the NF-κB inhibitory role of three Benzisothiazolone (BIT) derivatives (1, 2 and 3) in Hodgkin’s Lymphoma cells (L428) which constitutively express activated NF-κB. All three compounds showed dose-dependent NF-κB inhibition (78.3, 70.7 and 34.6%) in the luciferase reporter gene assay and were found cytotoxic at IC50 values of 3.3μg/ml, 4.35μg/ml and 13.8μg/ml, respectively by the XTT assay. BIT 1and BIT 2 (but not BIT 3) suppressed both NF-κB subunits p50 and p65 in cytoplasmic and nuclear extracts in a concentration-dependent manner. Furthermore, BIT 1 showed a moderate synergistic effect with the standard chemotherapy drugs etoposide and doxorubicin, whereas BIT 2 and 3 showed a moderate additive effect to antagonistic effect. Cisplatin exhibited an antagonist effect on all the compounds tested under various concentrations, except in the case of 1.56μg/ml of BIT 3 with 0.156μg/ml of cisplatin. The compounds also inhibited the migration of adherent human lung adenocarcinoma cells (A549) in vitro. We conclude that especially BIT 1 and BIT 2 have in vitro anti-inflammatory and anti-cancer activities, which can be further investigated for future potential therapeutic use. Methods: Inspired by the electrophilic sulfur in Nuphar alkaloids, monomeric and dimeric benzisothiazolones were synthesized from dithiodibenzoic acid and their NF-κB inhibitory role was explored. NF-κB inhibition and cytotoxicity of the synthesized derivatives were studied using luciferase reporter gene assay and XTTassay. Immunocytochemistry studies were performed using L428 cells. Cell migration assay was conducted using the A549 cell line. L428 cells were used to conduct combination studies and the results were plotted using CompuSyn software. Results: Benzisothiazolone derivatives exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. Potent compounds showed suppression of both NF-κB subunits p50 and p65 in a concentrationdependent manner, both in cytoplasmic and nuclear extracts. Combination studies suggest that benzisothiazolone derivatives possess a synergistic effect with etoposide and doxorubicin. Furthermore, the compounds also inhibited the migration of A549 cells. Conclusion: Benzisothiazolones bearing one or two electrophilic sulfur atoms as part of the heterocyclic framework exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. In addition, these derivatives also exhibited a synergistic effect with etoposide and doxorubicin along with the ability to inhibit the migration of A549 cells. Our study suggests that BIT-based new chemical entities could lead to potential anticancer agents.


2020 ◽  
Vol 209 (4-6) ◽  
pp. 177-188
Author(s):  
Katerina Cizkova ◽  
Katerina Koubova ◽  
Tereza Foltynkova ◽  
Jana Jiravova ◽  
Zdenek Tauber

There is growing evidence that soluble epoxide hydrolase (sEH) may play a role in cell differentiation. sEH metabolizes biologically highly active and generally cytoprotective epoxyeicosatrienoic acids (EETs), generated from arachidonic acid metabolism by CYP epoxygenases (CYP2C and CYP2J subfamilies), to less active corresponding diols. We investigated the effect of sEH inhibitor (TPPU) on the expression of villin, CYP2C8, CYP2C9, CYP2J2, and sEH in undifferentiated and in vitro differentiated HT-29 and Caco2 cell lines. The administration of 10 μM TPPU on differentiated HT-29 and Caco2 cells resulted in a significant decrease in expression of villin, a marker for intestinal cell differentiation. It was accompanied by a disruption of the brush border when microvilli appeared sparse and short in atomic force microscope scans of HT-29 cells. Although inhibition of sEH in differentiated HT-29 and Caco2 cells led to an increase in sEH expression in both cell lines, this treatment had an opposite effect on CYP2J2 expression in HT-29 and Caco2 cells. In addition, tissue samples of colorectal carcinoma and adjacent normal tissues from 45 patients were immunostained for sEH and villin. We detected a significant decrease in the expression of both proteins in colorectal carcinoma in comparison to adjacent normal tissue, and the decrease in both sEH and villin expression revealed a moderate positive association. Taken together, our results showed that sEH is an important player in intestinal cell differentiation.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 867
Author(s):  
Bruno Oyallon ◽  
Marie Brachet-Botineau ◽  
Cédric Logé ◽  
Thomas Robert ◽  
Stéphane Bach ◽  
...  

Proviral integration site for Moloney murine leukemia virus (Pim)-1/2 kinase overexpression has been identified in a variety of hematologic (e.g., multiple myeloma or acute myeloid leukemia (AML)) and solid (e.g., colorectal carcinoma) tumors, playing a key role in cancer progression, metastasis, and drug resistance, and is linked to poor prognosis. These kinases are thus considered interesting targets in oncology. We report herein the design, synthesis, structure–activity relationships (SAR) and in vitro evaluations of new quinoxaline derivatives, acting as dual Pim1/2 inhibitors. Two lead compounds (5c and 5e) were then identified, as potent submicromolar Pim-1 and Pim-2 inhibitors. These molecules were also able to inhibit the growth of the two human cell lines, MV4-11 (AML) and HCT-116 (colorectal carcinoma), expressing high endogenous levels of Pim-1/2 kinases.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 850
Author(s):  
Kristine Guran ◽  
Roxana Buzatu ◽  
Iulia Pinzaru ◽  
Madalina Boruga ◽  
Iasmina Marcovici ◽  
...  

Melissa officinalis is a medicinal herb with an extensive pharmacological profile that has been proven to have beneficial effects in oral and gastrointestinal disorders. However, the effects of this plant in oral, pharyngeal, and colorectal malignancies, types of cancer with an increased incidence in recent years, are less investigated. The present study aims to evaluate the pharmacological profile of a Melissa officinalis total extract for potential benefits in oral, pharynx and colorectal carcinoma. The LC-MS profile of MO total extract (MOte) indicated a rich content in polyphenols, data that support the potent antioxidant capacity exhibited and the antimicrobial activity against both Gram-negative and Gram-positive bacteria. In addition, MOte triggered a dose-dependent and selective decrease in the viability of tumor cells (tongue and pharynx squamous cell carcinomas, and colorectal adenocarcinoma), with the most significant effect being recorded at 100 µg/mL. At the same concentration, MOte exhibited an antiangiogenic effect by inhibiting the process of angiogenesis in ovo. Overall, our findings support the potential benefits of Melissa officinalis leaf total extract as a valuable candidate for the prophylaxis of oral, pharyngeal and colorectal neoplasms.


1997 ◽  
Vol 25 (2) ◽  
pp. 264S-264S ◽  
Author(s):  
ROBERT BREW ◽  
JOHN S. ERIKSON ◽  
DAVID C. WEST ◽  
BRIAN F. FLANAGAN ◽  
STEPHEN E. CHRISTMAS

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Nishanth Kumar Sasidharan ◽  
Sreerag Ravikumar Sreekala ◽  
Jubi Jacob ◽  
Bala Nambisan

Diarrhea is one of the leading causes of morbidity and mortality in humans in developed and developing countries. Furthermore, increased resistance to antibiotics has resulted in serious challenges in the treatment of this infectious disease worldwide. Therefore, there exists a need to develop alternative natural or combination drug therapies. The aim of the present study was to investigate the synergistic effect of curcumin-1 in combination with three antibiotics against five diarrhea causing bacteria. The antibacterial activity of curcumin-1 and antibiotics was assessed by the broth microdilution method, checkerboard dilution test, and time-kill assay. Antimicrobial activity of curcumin-1 was observed against all tested strains. The MICs of curcumin-1 against test bacteria ranged from 125 to 1000 μg/mL. In the checkerboard test, curcumin-1 markedly reduced the MICs of the antibiotics cefaclor, cefodizime, and cefotaxime. Significant synergistic effect was recorded by curcumin-1 in combination with cefotaxime. The toxicity of curcumin-1 with and without antibiotics was tested against foreskin (FS) normal fibroblast and no significant cytotoxicity was observed. From our result it is evident that curcumin-1 enhances the antibiotic potentials against diarrhea causing bacteria inin vitrocondition. This study suggested that curcumin-1 in combination with antibiotics could lead to the development of new combination of antibiotics against diarrhea causing bacteria.


2014 ◽  
Vol 306 (2) ◽  
pp. L207-L215 ◽  
Author(s):  
Masahiro Enomoto ◽  
Amish Jain ◽  
Jingyi Pan ◽  
Yulia Shifrin ◽  
Todd Van Vliet ◽  
...  

Inhaled nitric oxide (NO) and other cGMP- or cAMP-dependent pulmonary vasodilators are often used in combination for the treatment of the persistent pulmonary hypertension of the newborn syndrome. There is in vitro evidence to indicate that NO downregulate the pulmonary vascular response to cGMP-dependent agonists raising concern as to whether a synergistic effect is observed when employing a combined strategy in newborns. Hypothesizing that a synergistic effect is absent, we evaluated newborn and juvenile rat pulmonary arteries to determine the individual and combined vasodilatory effect of cGMP- and cAMP-dependent agonists. In precontracted near-resistance pulmonary arteries, the addition of sildenafil reduced vasorelaxation response to NO donor S-nitroso- N-acetyl penicillamine (SNAP). A similar decrease in SNAP-induced vasodilation was observed in arteries pretreated with BAY 41–2272 (10−9 M), a soluble guanylate cyclase stimulator cGMP, and its downstream protein kinase activator. cGMP also reduced the vasorelaxant response to the cAMP-dependent forskolin. Inhibition of endogenous vascular NO generation enhanced SNAP-induced relaxation. The present data suggest that the mechanism involved in the cGMP desensitization to other relaxant agonists involves downregulation of the small heat shock protein HSP20 and is evident in rat pulmonary and systemic vascular smooth muscle cells. In newborn rats with chronic hypoxia-induced pulmonary hypertension, the combination of sildenafil and inhaled NO resulted in a lesser reduction in pulmonary vascular resistance compared with their individual effect. These data suggest that clinical exposure to one cGMP-dependent pulmonary vasodilator may affect the response to other cGMP- or cAMP-mediated agonists.


Sign in / Sign up

Export Citation Format

Share Document