scholarly journals DNA Damage Regulates Alternative Splicing through Inhibition of RNA Polymerase II Elongation

Cell ◽  
2009 ◽  
Vol 139 (1) ◽  
pp. 211
Author(s):  
Manuel J. Muñoz ◽  
M. Soledad Pérez Santangelo ◽  
Maria P. Paronetto ◽  
Manuel de la Mata ◽  
Federico Pelisch ◽  
...  
Cell ◽  
2009 ◽  
Vol 137 (4) ◽  
pp. 708-720 ◽  
Author(s):  
Manuel J. Muñoz ◽  
M. Soledad Pérez Santangelo ◽  
Maria P. Paronetto ◽  
Manuel de la Mata ◽  
Federico Pelisch ◽  
...  

2020 ◽  
Vol 48 (11) ◽  
pp. 6068-6080 ◽  
Author(s):  
Nicolás Nieto Moreno ◽  
Florencia Villafañez ◽  
Luciana E Giono ◽  
Carmen Cuenca ◽  
Gastón Soria ◽  
...  

Abstract We have previously found that UV-induced DNA damage causes hyperphosphorylation of the carboxy terminal domain (CTD) of RNA polymerase II (RNAPII), inhibition of transcriptional elongation and changes in alternative splicing (AS) due to kinetic coupling between transcription and splicing. In an unbiased search for protein kinases involved in the AS response to DNA damage, we have identified glycogen synthase kinase 3 (GSK-3) as an unforeseen participant. Unlike Cdk9 inhibition, GSK-3 inhibition only prevents CTD hyperphosphorylation triggered by UV but not basal phosphorylation. This effect is not due to differential degradation of the phospho-CTD isoforms and can be reproduced, at the AS level, by overexpression of a kinase-dead GSK-3 dominant negative mutant. GSK-3 inhibition abrogates both the reduction in RNAPII elongation and changes in AS elicited by UV. We show that GSK-3 phosphorylates the CTD in vitro, but preferentially when the substrate is previously phosphorylated, consistently with the requirement of a priming phosphorylation reported for GSK-3 efficacy. In line with a role for GSK-3 in the response to DNA damage, GSK-3 inhibition prevents UV-induced apoptosis. In summary, we uncover a novel role for a widely studied kinase in key steps of eukaryotic transcription and pre-mRNA processing.


2011 ◽  
Vol 32 (4) ◽  
pp. 751-762 ◽  
Author(s):  
M. Montes ◽  
A. Cloutier ◽  
N. Sanchez-Hernandez ◽  
L. Michelle ◽  
B. Lemieux ◽  
...  

2003 ◽  
Vol 2 (2) ◽  
pp. 274-283 ◽  
Author(s):  
Denis Ostapenko ◽  
Mark J. Solomon

ABSTRACT CTDK-I phosphorylates the C-terminal domain (CTD) of the large subunit of yeast RNA polymerase II in a reaction that stimulates transcription elongation. Mutations in CTDK-I subunits—Ctk1p, Ctk2p, and Ctk3p—confer conditional phenotypes. In this study, we examined the role of CTDK-I in the DNA damage response. We found that mutation of individual CTDK-I subunits rendered yeast sensitive to hydroxyurea (HU) and UV irradiation. Treatment with DNA-damaging agents increased phosphorylation of Ser2 within the CTD repeats in wild-type but not in ctk1Δ mutant cells. Using microarray hybridization, we identified genes whose transcription following DNA damage is Ctk1p dependent, including several DNA repair and stress response genes. Following HU treatment, the level of Ser2-phosphorylated RNA polymerase II increased both globally and on the CTDK-I-regulated genes. The pleiotropic phenotypes of ctk mutants suggest that CTDK-I activity is essential during large-scale transcriptional repatterning under stress and unfavorable growth conditions.


DNA Repair ◽  
2021 ◽  
pp. 103192
Author(s):  
Nan Jia ◽  
Chaowan Guo ◽  
Yuka Nakazawa ◽  
Diana van den Heuvel ◽  
Martijn S. Luijsterburg ◽  
...  

2019 ◽  
Author(s):  
Shiqin Xiong ◽  
Yang S. Brooks ◽  
Zheqiong Yang ◽  
Jiacai Wu ◽  
Liyong Zhang ◽  
...  

AbstractThe heptad repeating sequence of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II is highly conserved in eukaryotes. In yeast, a CTD code consisting of pairs of heptad repeats is essential for viability. However, the strict requirement of diheptad repeats for the CTD function in transcription and splicing is unexplained. Here we show that CoAA (gene symbol RBM14), an oncoprotein and mammalian transcriptional coactivator, possesses diheptad repeats and directly interacts with the CTD. CoAA comprises 27 copies of tyrosine-rich repeats and regulates pre-mRNA synthesis and alternative splicing. Tyrosine substitutions in either the CoAA repeats or the CTD repeats diminish their interactions. Ser2- or Ser5-phosphorylated CTD peptides exhibit higher binding affinity to CoAA than the corresponding non-phosphorylated CTD peptide. CoAA dynamically interacts with both the CTD and hnRNP M, which is an alternative splicing regulator also comprising diheptad repeats. Arginine methylation of CoAA switches its interaction from the hnRNP M repeats to the CTD repeats. This study provides a mechanism for CoAA at the interface of transcription and alternative splicing, and explains the functional requirement of diheptad repeats in the CTD. In the human genome, tyrosine-rich repeats similar to the CoAA repeats were only found in six oncoproteins including EWS and SYT. We suggest that the diheptad sequence is one of the signature features for the CTD interaction among oncoproteins involved in transcription and alternative splicing. We anticipate that direct RNA Pol II interaction is a mechanism in oncogenesis.


Sign in / Sign up

Export Citation Format

Share Document