splicing regulator
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 61)

H-INDEX

31
(FIVE YEARS 5)

Author(s):  
Zhi-Yan Wang ◽  
Xiao-Xiao Liu ◽  
Yun-Fei Deng

AbstractA limited delivery of oxygen and metabolic substrate to the heart caused by myocardial infarction (MI) impairs the cardiac function, and often results in heart failure. Here, we identified a circRNA (circ-SNRK) from SNRK (sucrose nonfermenting 1-related kinase, which can increase the cardiac mitochondrial efficiency) in cardiomyocytes (CMs). Circ-SNRK can sponge the miR-33 and in turn improved the ATP synthesis via SNRK, proving the existence of circ-SNRK - miR-33 - SNRK axis. Furthermore, we found that protein NOVA1 (NOVA alternative splicing regulator 1) could accelerate the circ-SNRK formation; a cleaved peptide (~55 kDa) from SNRK enters the nucleus and blocks the cyclization of circ-SNRK via binding to NOVA1. The aforementioned negative feedback of SNRK to circ-SNRK limited the SNRK at a proper level, and inhibited the protective role of circ-SNRK in ischemic heart. In addition, our in vivo experiment indicated that the overexpression of exogenic circ-SNRK could break this loop and improves the cardiac function post-MI in rats. Together, our results demonstrated that the negative loop of circ-SNRK with SNRK regulates the energy metabolism in CMs, thus might be a potential therapeutic target for heart failure.


2021 ◽  
Author(s):  
Thomas Spruce ◽  
Mireya Plass ◽  
André Gohr ◽  
Debashish Ray ◽  
María Martínez de Lagrán ◽  
...  

AbstractThe eutherian placenta is a major site for parental genetic conflict. Here, we identify the X-linked Mbnl3 gene as a novel player in this dispute. Mbnl3 belongs to an RNA binding protein family whose members regulate alternative splicing and other aspects of RNA metabolism in association with cellular differentiation. We find that, in eutherians, Mbnl3 has become specifically expressed in placenta and has undergone accelerated sequence evolution leading to changes in its RNA binding specificities. Although its molecular roles are partly redundant with those of Mbnl2, Mbnl3 has also acquired novel biological functions. In particular, whereas Mbnl2;Mbnl3 double knockout mice display severe placental maturation defects leading to strong histological and functional abnormalities, Mbnl3 knockout alone results in increased placental growth and favors placental and fetal resource allocation during limiting conditions.


2021 ◽  
Author(s):  
Lena Pia Schlautmann ◽  
Volker Boehm ◽  
Jan-Wilm Lackmann ◽  
Janine Altmueller ◽  
Christoph Dieterich ◽  
...  

The exon junction complex (EJC) is an RNA-binding multi-protein complex with critical functions in post-transcriptional gene regulation. It is deposited on the mRNA during splicing and regulates diverse processes including pre-mRNA splicing, mRNA export, mRNA translation, and nonsense-mediated mRNA decay (NMD) via various interacting peripheral proteins. The EJC-binding protein RNPS1 might serve two functions: it suppresses mis-splicing of cryptic splice sites and activates NMD in the cytoplasm. When analyzing the transcriptome-wide effects of EJC and RNPS1 knockdowns in different human cell lines, we find no evidence for RNPS1 being a globally essential NMD factor. However, various aberrant splicing events strongly suggest that the main function of RNPS1 is splicing regulation. Rescue analyses revealed that about half of these RNPS1-dependent splicing events was fully or partially rescued by the expression of the isolated RRM domain of RNPS1, whereas other splicing events are regulated by its C-terminal domain. We identified many splicing-regulatory factors, including SR proteins and U1 snRNP components, that specifically interact with the C-terminus or with the RRM of RNPS1. Thus, RNPS1 emerges as a multifunctional splicing regulator that promotes correct and efficient splicing of different vulnerable splicing events via the formation of diverse splicing-promoting complexes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kazuhiro Fukumura ◽  
Rei Yoshimoto ◽  
Luca Sperotto ◽  
Hyun-Seo Kang ◽  
Tetsuro Hirose ◽  
...  

AbstractHuman pre-mRNA introns vary in size from under fifty to over a million nucleotides. We searched for essential factors involved in the splicing of human short introns by screening siRNAs against 154 human nuclear proteins. The splicing activity was assayed with a model HNRNPH1 pre-mRNA containing short 56-nucleotide intron. We identify a known alternative splicing regulator SPF45 (RBM17) as a constitutive splicing factor that is required to splice out this 56-nt intron. Whole-transcriptome sequencing of SPF45-deficient cells reveals that SPF45 is essential in the efficient splicing of many short introns. To initiate the spliceosome assembly on a short intron with the truncated poly-pyrimidine tract, the U2AF-homology motif (UHM) of SPF45 competes out that of U2AF65 (U2AF2) for binding to the UHM-ligand motif (ULM) of the U2 snRNP protein SF3b155 (SF3B1). We propose that splicing in a distinct subset of human short introns depends on SPF45 but not U2AF heterodimer.


2021 ◽  
Author(s):  
Meijia Liu ◽  
Xianjing Song ◽  
Longbo Li ◽  
Chunli Song ◽  
Yongfeng Shi

Abstract Muscleblind Like Splicing Regulator 1 (MBNL1), one canonical RNA binding protein (RBP), plays important roles in the regulation of the alternative splicing (AS) on pre-mRNAs. MBNL1 has traditionally been considered involved in the pathogenesis of myotonic dystrophy. Recent researches point out that MBNL1 has an effect on cancer progress, but the underlying mechanisms are unclear. In this study, we obtained the regulated transcriptome profile of MBNL1 in HeLa cells by RNA-seq analysis. The results showed that the knockdown of MBNL1 promoted cell proliferation while inhibited apoptosis. We found 398 genes were differentially up-regulated and 277 down-regulated by MBNL1 knockdown (KD). The differentially expressed genes (DEGs) regulated by MBNL1-KD were enriched in the signal pathways of homophilic cell adhesion, apoptotic process, extracellular matrix organization and cell migration. Systematical AS analysis revealed 504 MBNL1-regulated AS events. The regulated alternative splicing genes (RASGs) were enriched in the signal pathways of apoptotic signaling pathway, positive regulation of apoptotic process, adherent junction, fatty acid elongation and DNA repair. In summary, our results demonstrate that the knockdown of MBNL1 have significant effects on cell proliferation and apoptosis by regulating the expression and alternative splicing of associated genes, illustrating the possible molecular mechanisms of MBNL1 in cancer pathogenesis and progression and other diseases.


Sign in / Sign up

Export Citation Format

Share Document