scholarly journals Role of calcium in adult onset polycystic kidney disease

2019 ◽  
Vol 53 ◽  
pp. 140-150 ◽  
Author(s):  
Murali K. Yanda ◽  
Qiangni Liu ◽  
Valeriu Cebotaru ◽  
William B. Guggino ◽  
Liudmila Cebotaru
Radiology ◽  
1980 ◽  
Vol 135 (2) ◽  
pp. 423-427 ◽  
Author(s):  
A T Rosenfield ◽  
M H Lipson ◽  
B Wolf ◽  
K J Taylor ◽  
N S Rosenfield ◽  
...  

1993 ◽  
Vol 90 (5) ◽  
pp. 569-571 ◽  
Author(s):  
Alan F. Wright ◽  
Peter W. Teague ◽  
Susan E. Pound ◽  
Patricia M. Pignatelli ◽  
Anne M. Macnicol ◽  
...  

2020 ◽  
Author(s):  
Foteini Patera ◽  
Guillaume M Hautbergue ◽  
Patricia Wilson ◽  
Paul C Evans ◽  
Albert CM Ong ◽  
...  

ABSTRACTAutosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common genetic kidney disorder resulting in 10% of patients with renal failure. The molecular events responsible for the relentless growth of cysts are not defined. Thus, identification of novel drivers of ADPKD may lead to new therapies. Ankyrin Repeat and Single KH domain-1 (ANKHD1) controls cancer cell proliferation, yet its role in ADPKD is unexplored. Here, we present the first data that identify ANKHD1 as a driver of proliferative growth in cellular and mouse models of ADPKD. Using the first Ankhd1-deficient mice, we demonstrate that Ankhd1 heterozygosity potently reduces cystic growth and fibrosis, in a genetically orthologous mouse model of ADPKD. We performed transcriptome-wide profiling of patient-derived ADPKD cells with and without ANKHD1 siRNA silencing, revealing a major role for ANKHD1 in the control of cell proliferation and matrix remodelling. We validated the role of ANKHD1 in enhancing proliferation in patient-derived cells. Mechanistically ANKHD1 promotes STAT5 signalling in ADPKD mice. Hence, ANKHD1 is a novel driver of ADPKD, and its inhibition may be of therapeutic benefit.


Physiology ◽  
2015 ◽  
Vol 30 (3) ◽  
pp. 195-207 ◽  
Author(s):  
Takamitsu Saigusa ◽  
P. Darwin Bell

Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent inherited renal disease, characterized by multiple cysts that can eventually lead to kidney failure. Studies investigating the role of primary cilia and polycystins have significantly advanced our understanding of the pathogenesis of PKD. This review will present clinical and basic aspects of ADPKD, review current concepts of PKD pathogenesis, evaluate potential therapeutic targets, and highlight challenges for future clinical studies.


2019 ◽  
Vol 30 (11) ◽  
pp. 2103-2111 ◽  
Author(s):  
Ming Ma ◽  
Emilie Legué ◽  
Xin Tian ◽  
Stefan Somlo ◽  
Karel F. Liem

BackgroundPKD1 or PKD2, the two main causal genes for autosomal dominant polycystic kidney disease (ADPKD), encode the multipass transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Polycystins localize to the primary cilium, an organelle essential for cell signaling, including signal transduction of the Hedgehog pathway. Mutations in ciliary genes that build and maintain the cilium also cause renal cystic disease through unknown pathways. Although recent studies have found alterations in Hedgehog signaling in ADPKD-related models and tissues, the relationship between Hedgehog and polycystic kidney disease is not known.MethodsTo examine the potential role of cell-autonomous Hedgehog signaling in regulating kidney cyst formation in vivo in both early- and adult-onset mouse models of ADPKD, we used conditional inactivation of Pkd1 combined with conditional modulation of Hedgehog signaling components in renal epithelial cells, where mutations in Pkd1 initiate cyst formation. After increasing or decreasing levels of Hedgehog signaling in cells that underwent inactivation of Pkd1, we evaluated the effects of these genetic manipulations on quantitative parameters of polycystic kidney disease severity.ResultsWe found that in Pkd1 conditional mutant mouse kidneys, neither downregulation nor activation of the Hedgehog pathway in epithelial cells along the nephron significantly influenced the severity of the polycystic kidney phenotype in mouse models of developmental or adult-onset of ADPKD.ConclusionsThese data suggest that loss of Pkd1 function results in kidney cysts through pathways that are not affected by the activity of the Hedgehog pathway.


Sign in / Sign up

Export Citation Format

Share Document