Role of the N-terminal polycystic kidney disease domain in chitin degradation by chitinase A from a marine bacterium, Alteromonas sp. strain O-7

2005 ◽  
Vol 99 (3) ◽  
pp. 551-557 ◽  
Author(s):  
H. Orikoshi ◽  
S. Nakayama ◽  
C. Hanato ◽  
K. Miyamoto ◽  
H. Tsujibo
2020 ◽  
Author(s):  
Foteini Patera ◽  
Guillaume M Hautbergue ◽  
Patricia Wilson ◽  
Paul C Evans ◽  
Albert CM Ong ◽  
...  

ABSTRACTAutosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common genetic kidney disorder resulting in 10% of patients with renal failure. The molecular events responsible for the relentless growth of cysts are not defined. Thus, identification of novel drivers of ADPKD may lead to new therapies. Ankyrin Repeat and Single KH domain-1 (ANKHD1) controls cancer cell proliferation, yet its role in ADPKD is unexplored. Here, we present the first data that identify ANKHD1 as a driver of proliferative growth in cellular and mouse models of ADPKD. Using the first Ankhd1-deficient mice, we demonstrate that Ankhd1 heterozygosity potently reduces cystic growth and fibrosis, in a genetically orthologous mouse model of ADPKD. We performed transcriptome-wide profiling of patient-derived ADPKD cells with and without ANKHD1 siRNA silencing, revealing a major role for ANKHD1 in the control of cell proliferation and matrix remodelling. We validated the role of ANKHD1 in enhancing proliferation in patient-derived cells. Mechanistically ANKHD1 promotes STAT5 signalling in ADPKD mice. Hence, ANKHD1 is a novel driver of ADPKD, and its inhibition may be of therapeutic benefit.


Physiology ◽  
2015 ◽  
Vol 30 (3) ◽  
pp. 195-207 ◽  
Author(s):  
Takamitsu Saigusa ◽  
P. Darwin Bell

Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent inherited renal disease, characterized by multiple cysts that can eventually lead to kidney failure. Studies investigating the role of primary cilia and polycystins have significantly advanced our understanding of the pathogenesis of PKD. This review will present clinical and basic aspects of ADPKD, review current concepts of PKD pathogenesis, evaluate potential therapeutic targets, and highlight challenges for future clinical studies.


2019 ◽  
Vol 53 ◽  
pp. 140-150 ◽  
Author(s):  
Murali K. Yanda ◽  
Qiangni Liu ◽  
Valeriu Cebotaru ◽  
William B. Guggino ◽  
Liudmila Cebotaru

2013 ◽  
Vol 305 (6) ◽  
pp. F797-F812 ◽  
Author(s):  
Gustavo Blanco ◽  
Darren P. Wallace

The classic role of the Na-K-ATPase is that of a primary active transporter that utilizes cell energy to establish and maintain transmembrane Na+ and K+ gradients to preserve cell osmotic stability, support cell excitability, and drive secondary active transport. Recent studies have revealed that Na-K-ATPase located within cholesterol-containing lipid rafts serves as a receptor for cardiotonic steroids, including ouabain. Traditionally, ouabain was viewed as a toxin produced only in plants, and it was used in relatively high concentrations to experimentally block the pumping action of the Na-K-ATPase. However, the new and unexpected role of the Na-K-ATPase as a signal transducer revealed a novel facet for ouabain in the regulation of a myriad of cell functions, including cell proliferation, hypertrophy, apoptosis, mobility, and metabolism. The seminal discovery that ouabain is endogenously produced in mammals and circulates in plasma has fueled the interest in this endogenous molecule as a potentially important hormone in normal physiology and disease. In this article, we review the role of the Na-K-ATPase as an ion transporter in the kidney, the experimental evidence for ouabain as a circulating hormone, the function of the Na-K-ATPase as a signal transducer that mediates ouabain's effects, and novel results for ouabain-induced Na-K-ATPase signaling in cystogenesis of autosomal dominant polycystic kidney disease.


2018 ◽  
Vol 34 (9) ◽  
pp. 1453-1460 ◽  
Author(s):  
Matthew B Lanktree ◽  
Ioan-Andrei Iliuta ◽  
Amirreza Haghighi ◽  
Xuewen Song ◽  
York Pei

Abstract Autosomal dominant polycystic kidney disease (ADPKD) is caused primarily by mutations of two genes, PKD1 and PKD2. In the presence of a positive family history of ADPKD, genetic testing is currently seldom indicated as the diagnosis is mostly based on imaging studies using well-established criteria. Moreover, PKD1 mutation screening is technically challenging due to its large size, complexity (i.e. presence of six pseudogenes with high levels of DNA sequence similarity) and extensive allelic heterogeneity. Despite these limitations, recent studies have delineated a strong genotype–phenotype correlation in ADPKD and begun to unravel the role of genetics underlying cases with atypical phenotypes. Furthermore, adaptation of next-generation sequencing (NGS) to clinical PKD genetic testing will provide a high-throughput, accurate and comprehensive screen of multiple cystic disease and modifier genes at a reduced cost. In this review, we discuss the evolving indications of genetic testing in ADPKD and how NGS-based screening promises to yield clinically important prognostic information for both typical as well as unusual genetic (e.g. allelic or genic interactions, somatic mosaicism, cystic kidney disease modifiers) cases to advance personalized medicine in the era of novel therapeutics for ADPKD.


Sign in / Sign up

Export Citation Format

Share Document