scholarly journals Melanin Pathway Genes Regulate Color and Morphology of Butterfly Wing Scales

Cell Reports ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Yuji Matsuoka ◽  
Antónia Monteiro
2017 ◽  
Author(s):  
Yuji Matsuoka ◽  
Antónia Monteiro

AbstractThe cuticular skeleton of a butterfly wing scale cell serves both as a substrate for the deposition of pigments and as an exquisitely finely-sculpted material responsible for the production of structural colors. While cuticle rigidity and pigmentation depend to a large extent on the end products of a branched biochemical pathway – the melanin pathway – little is known whether genes in this pathway also play a role in the development of specific scale morphologies that might aid in the development of structural colors. Here we first show that male and female Bicyclus anynana butterflies display differences in scale size and scale morphology but no differences in scale color. Then we use CRISPR/Cas9 to show that knockout mutations in five genes that function in the melanin pathway, TH, DDC, yellow, ebony, and aaNAT, affect both the fine structure and the coloration of the wing scales. Most dramatically, mutations in yellow led to extra horizontal cuticular laminae on the surface of scales, whereas mutations in DDC led to taller and sheet-like vertical cuticular laminae throughout each scale. We identify some of the first genes affecting the development of scale morphology, and whose regulation and pleiotropic effects may be important in creating, as well as limiting, the diversity of structural as well as pigmentary colors observed in butterflies.


Small ◽  
2015 ◽  
Vol 12 (6) ◽  
pp. 713-720 ◽  
Author(s):  
Zhiwu Han ◽  
Zhengzhi Mu ◽  
Bo Li ◽  
Shichao Niu ◽  
Junqiu Zhang ◽  
...  

2014 ◽  
Vol 39 ◽  
pp. 221-226 ◽  
Author(s):  
K. Kertész ◽  
G. Piszter ◽  
E. Jakab ◽  
Zs. Bálint ◽  
Z. Vértesy ◽  
...  

2007 ◽  
Vol 4 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Li-yan Wu ◽  
Zhi-wu Han ◽  
Zhao-mei Qiu ◽  
Hui-ying Guan ◽  
Lu-quan Ren

Biomimetics ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Sigrid Zobl ◽  
Bodo D. Wilts ◽  
Willi Salvenmoser ◽  
Peter Pölt ◽  
Ille C. Gebeshuber ◽  
...  

The photonic structures of butterfly wing scales are widely known to cause angle-dependent colours by light interference with nanostructures present in the wing scales. Here, we quantify the relevance of the horizontal alignment of the butterfly wing scales on the wing. The orientation-dependent reflection was measured at four different azimuth angles, with a step size of 90°, for ten samples—two of different areas of the same species—of eight butterfly species of three subfamilies at constant angles of illumination and observation. For the observed species with varying optical structures, the wing typically exhibits higher orientation-dependent reflections than the individual scale. We find that the measured anisotropy is caused by the commonly observed grating structures that can be found on all butterfly wing scales, rather than the local photonic structures. Our results show that the technique employed here can be used to quickly evaluate the orientation-dependence of the reflection and hence provide important input for bio-inspired applications, e.g., to identify whether the respective structure is suitable as a template for nano-imprinting techniques.


2020 ◽  
Vol 92 (2) ◽  
pp. 223-232
Author(s):  
Zhen Luo ◽  
Zhaoyue Weng ◽  
Qingchen Shen ◽  
Shun An ◽  
Jiaqing He ◽  
...  

AbstractThis work explores an alternative vapor sensing mechanism through analyzing dynamic desorption process from butterfly wings for the differentiation of both individual and mixed vapors quantitatively. Morpho butterfly wings have been used in differentiating individual vapors, but it is challenging to use them for the differentiation of mixed vapor quantitatively. This paper demonstrates the use of Morpho butterfly wings for the sensitive and selective detection of closely related vapors in mixtures. Principal components analysis (PCA) is used to process the reflectance spectra of the wing scales during dynamic desorption of different vapors. With the desorption-based detection mechanism, individual vapors with different concentrations and mixed vapors with different mixing ratios can be differentiated using the butterfly wing based sensors. Both the original butterfly wings and butterfly wings with surface modification show the capability in distinguishing vapors in mixtures, which may offer a guideline for further improving selectivity and sensitivity of bioinspired sensors.


Sign in / Sign up

Export Citation Format

Share Document