Biomimetics
Latest Publications


TOTAL DOCUMENTS

305
(FIVE YEARS 234)

H-INDEX

13
(FIVE YEARS 8)

Published By Mdpi Ag

2313-7673

Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Ille C. Gebeshuber
Keyword(s):  

Biomimetic nanotechnology relates to the most basic aspects of living systems, and the transfer of their properties to human applications [...]


Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 15
Author(s):  
Yixiang Deng ◽  
Hung-yu Chang ◽  
He Li

Diabetes mellitus, a metabolic disease characterized by chronically elevated blood glucose levels, affects about 29 million Americans and more than 422 million adults all over the world. Particularly, type 2 diabetes mellitus (T2DM) accounts for 90–95% of the cases of vascular disease and its prevalence is increasing due to the rising obesity rates in modern societies. Although multiple factors associated with diabetes, such as reduced red blood cell (RBC) deformability, enhanced RBC aggregation and adhesion to the endothelium, as well as elevated blood viscosity are thought to contribute to the hemodynamic impairment and vascular occlusion, clinical or experimental studies cannot directly quantify the contributions of these factors to the abnormal hematology in T2DM. Recently, computational modeling has been employed to dissect the impacts of the aberrant biomechanics of diabetic RBCs and their adverse effects on microcirculation. In this review, we summarize the recent advances in the developments and applications of computational models in investigating the abnormal properties of diabetic blood from the cellular level to the vascular level. We expect that this review will motivate and steer the development of new models in this area and shift the attention of the community from conventional laboratory studies to combined experimental and computational investigations, aiming to provide new inspirations for the development of advanced tools to improve our understanding of the pathogenesis and pathology of T2DM.


Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 14
Author(s):  
Miguel Chen Austin ◽  
Kevin Araque ◽  
Paola Palacios ◽  
Katherine Rodríguez Maure ◽  
Dafni Mora

Urban growth has increased the risk of over-heating both in the microclimate and inside buildings, affecting thermal comfort and energy efficiency. That is why this research aims to evaluate the energy performance of buildings in terms of thermal comfort (operative temperature (OP) levels, satisfied hours of natural ventilation SHNV, thermal lag), and energy efficiency (roof heat gains and surface temperatures) in an urban area in Panama City, using superficial-heat-dissipation biomimetic strategies. Two case studies, a base case and a proposed case, were evaluated using the Designbuilder software through dynamic simulation. The proposed case is based on a combined biomimetic strategy; the reflective characteristics of the Saharan ant applied as a coating on the roofs through a segmented pattern such as the Zebra’s stripes (one section with coating, and another without). Results showed that the OP decreased from 8 to 10 °C for the entire urban zone throughout the year. A reduction of 3.13% corresponding to 8790 kWh per year was achieved for cooling energy consumption. A difference of 5 °C in external surface temperature was obtained, having a lower temperature in which the biomimetic strategy was applied. Besides, it was evidenced that a contrasted-reflectivity-stripes pitched roof performed better than a fully reflective roof. Thus, the functionality of Zebra stripes, together with the reflective characteristics of the Saharan ant, provide better performance for buildings’ thermal regulation and energy needs for cooling.


Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 12
Author(s):  
Markos Petousis ◽  
Nectarios Vidakis ◽  
Emmanuel Velidakis ◽  
John D. Kechagias ◽  
Constantine N. David ◽  
...  

In this study, Cuprous Oxide (Cu2O), known for its mechanism against bacteria, was used as filler to induce biocidal properties on a common commercial resin stereolithography (SLA) 3D printing resin. The aim was to develop nanocomposites suitable for the SLA process with a low-cost process that mimic host defense peptides (HDPs). Such materials have a huge economic and societal influence on the global technological war on illness and exploiting 3D printing characteristics is an additional asset for these materials. Their mechanical performance was also investigated with tensile, flexural, Charpy’s impact, and Vickers microhardness tests. Morphological analysis was performed through scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy-dispersive X-ray spectroscopy (EDS) analysis, while the thermal behavior was studied through Thermogravimetric Analysis (TGA). The antibacterial activity of the fabricated nanocomposites was investigated using a screening agar well diffusion method, for a gram-negative and a gram-positive bacterium. Three-dimensional printed nanocomposites exhibited antibacterial performance in all loadings studied, while their mechanical enhancement was approximately 20% even at low filler loadings, revealing a multi-functional performance and a potential of Cuprous Oxide implementation in SLA resin matrices for engineering and medical applications.


Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 13
Author(s):  
Yuxiang Zhang ◽  
Hortense Le Ferrand

Bioinspired self-shaping is an approach used to transform flat materials into unusual three-dimensional (3D) shapes by tailoring the internal architecture of the flat material. Bioinspiration and bioinspired materials have a high potential for fostering sustainable development, yet are often fashioned out of expensive and synthetic materials. In this work, we use bioinspiration to endow clay with self-shaping properties upon drying. The composites created are based on clay and starch, and the internal architecture is built using celery fibers. The viscosity, shrinkage, and bending of the architected composite monolayers are studied for several compositions by measuring penetration depth and using optical characterization methods. Bilayer structures inspired from plants are then processed using a simple hand layup process to achieve bending, twisting, and combinations of those after drying. By layering a mixture of 32 vol% clay, 25.8 vol% starch, and 42.2 vol% water with 40 wt% embedded aligned celery fibers, it is possible to obtain the desired shape change. The work presented here aims at providing a simple method for teaching the concept of bioinspiration, and for creating new materials using only clay and plant-based ingredients. Rejuvenating clay with endowed self-shaping properties could further expand its use. Furthermore, the materials, methods, and principles presented here are affordable, simple, largely applicable, and could be used for sustainable development in the domain of education as well as materials and structures.


Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Michelangelo Giuliani ◽  
Ignazio Dimino ◽  
Salvatore Ameduri ◽  
Rosario Pecora ◽  
Antonio Concilio

In a previous paper, the authors dealt with the current showstoppers that inhibit commercial applicability of morphing systems. In this work, the authors express a critical vision of the current status of the proposed architectures and the needs that should be accomplished to make them viable for installation onboard of commercial aircraft. The distinction is essential because military and civil issues and necessities are very different, and both the solutions and difficulties to be overcome are widely diverse. Yet, still remaining in the civil segment, there can be other differences, depending on the size of the aircraft, from large jets to commuters or general aviation, which are classifiable in tourism, acrobatic, ultralight, and so on, each with their own peculiarities. Therefore, the paper aims to trace a common technology denominator, if possible, and envisage a future perspective of actual applications.


Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Alexander Pestov ◽  
Yuliya Privar ◽  
Arseny Slobodyuk ◽  
Andrey Boroda ◽  
Svetlana Bratskaya

Here we demonstrate the possibility of using acyclic diethylacetal of acetaldehyde (ADA) with low cytotoxicity for the fabrication of hydrogels via Schiff bases formation between chitosan and acetaldehyde generated in situ from acetals in chitosan acetate solution. This approach is more convenient than a direct reaction between chitosan and acetaldehyde due to the better commercial availability and higher boiling point of the acetals. Rheological data confirmed the formation of intermolecular bonds in chitosan solution after the addition of acetaldehyde diethyl acetal at an equimolar NH2: acetal ratio. The chemical structure of the reaction products was determined using elemental analysis and 13C NMR and FT-IR spectroscopy. The formed chitosan-acetylimine underwent further irreversible redox transformations yielding a mechanically stable hydrogel insoluble in a broad pH range. The reported reaction is an example of when an inappropriate selection of acid type for chitosan dissolution prevents hydrogel formation.


Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 9
Author(s):  
Halvor T. Tramsen ◽  
Lars Heepe ◽  
Stanislav N. Gorb

The granular media friction pad (GMFP) inspired by the biological smooth attachment pads of cockroaches and grasshoppers employs passive jamming, to create high friction forces on a large variety of substrates. The granular medium inside the pad is encased by a flexible membrane which at contact formation greatly adapts to the substrate profile. Upon applying load, the granular medium undergoes the jamming transition and changes from fluid-like to solid-like properties. The jammed granular medium, in combination with the deformation of the encasing elastic membrane, results in high friction forces on a multitude of substrate topographies. Here we explore the effect of elasticity variation on the generation of friction by varying granular media filling quantity as well as membrane modulus and thickness. We systematically investigate contact area and robustness against substrate contamination, and we also determine friction coefficients for various loading forces and substrates. Depending on the substrate topography and loading forces, a low filling quantity and a thin, elastic membrane can be favorable, in order to generate the highest friction forces.


Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 8
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Emmanuel Velidakis ◽  
Nikolaos Mountakis ◽  
Dimitris Tsikritzis ◽  
...  

Metals, such as silver, gold, and copper are known for their biocidal properties, mimicking the host defense peptides (HDPs) of the immune system. Developing materials with such properties has great importance in medicine, especially when combined with 3D printing technology, which is an additional asset for various applications. In this work, copper nanoparticles were used as filler in stereolithography (SLA) ultraviolet (UV) cured commercial resin to induce such biocidal properties in the material. The nanocomposites developed featured enhanced mechanical responses when compared with the neat material. The prepared nanocomposites were employed to manufacture specimens with the SLA process, to be tested for their mechanical response according to international standards. The process followed was evaluated with Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The antibacterial activity of the fabricated nanocomposites was evaluated using the agar-well diffusion method. Results showed enhanced mechanical performance of approximately 33.7% in the tensile tests for the nanocomposites filled with 1.0 wt.%. ratios, when compared to the neat matrix material, while this loading showed sufficient antibacterial performance when compared to lower filler loadings, providing an added value for the fabrication of effective nanocomposites in medical applications with the SLA process.


Biomimetics ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Foteini K. Kozaniti ◽  
Despina D. Deligianni ◽  
Margarita D. Georgiou ◽  
Diana V. Portan

The hypothesis of the present research is that by altering the substrate topography and/or stiffness to make it biomimetic, we can modulate cells behavior. Substrates with similar surface chemistry and varying stiffnesses and topographies were prepared. Bulk PCL and CNTs-reinforced PCL composites were manufactured by solvent casting method and electrospinning and further processed to obtain tunable moduli of elasticity in the range of few MPa. To ensure the same chemical profile for the substrates, a protein coating was added. Substrate topography and properties were investigated. Further on, the feedback of Wharton’s Jelly Umbilical Cord Mesenchymal Stem Cells to substrates characteristics was investigated. Solvent casting scaffolds displayed superior mechanical properties compared to the corresponding electrospun films. However, the biomimetic fibrous texture of the electrospun substrates induced improved feedback of the cells with respect to their viability and proliferation. Cells’ adhesion and differentiation was remarkably pronounced on solvent casting substrates compared to the electrospun substrates. Soft substates improved cells multiplication and migration, while stiff substrates induced differentiation into bone cells. Aspects related to the key factors and the ideal properties of substrates and microenvironments were clarified, aiming towards the deep understanding of the required optimum biomimetic features of biomaterials.


Sign in / Sign up

Export Citation Format

Share Document