Prediction early age compressive strength of OPC-based geopolymers with different alkali activators and seashell powder by gene expression programming

2013 ◽  
Vol 39 (2) ◽  
pp. 1433-1442 ◽  
Author(s):  
Ali Nazari ◽  
Mohammad Ghafouri Safarnejad
2012 ◽  
Vol 45 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Seyyed Mohammad Mousavi ◽  
Pejman Aminian ◽  
Amir Hossein Gandomi ◽  
Amir Hossein Alavi ◽  
Hamed Bolandi

2021 ◽  
Vol 6 (12) ◽  
pp. 181
Author(s):  
Van-Ngoc Pham ◽  
Erwin Oh ◽  
Dominic E. L. Ong

The study aims to develop a reliable model using gene-expression programming (GEP) technique for estimating the unconfined compressive strength (UCS) of soil stabilization by cement and fly ash. The model considered the effects of several parameters, including the fly ash characteristics such as calcium oxide (CaO) content, CaO/SiO2 ratio, and loss of ignition. The research results show that the proposed model demonstrates superior performance with a high correlation coefficient (R > 0.955) and low errors. Therefore, the model could be confidently applied in practice for a variety of fly ash qualities. Besides, the parametric study was conducted to examine the effect of fly ash characteristics on the strength of soil stabilization. The study indicates that if the fly ash contains a high amount of calcium oxide, the strength of fly ash stabilized soil is significant. In addition, fly ash could be used in combination with cement to increase the strength of the mixture. A fly ash replacement ratio is suggested from 0.19 to 0.35, corresponding to the total binder used from 10% to 30%. The research findings could help engineers in optimizing the fly ash proportion and estimating the UCS of soil stabilization by cement and fly ash.


2017 ◽  
Vol 30 (11) ◽  
pp. 3523-3532 ◽  
Author(s):  
Danial Jahed Armaghani ◽  
Vali Safari ◽  
Ahmad Fahimifar ◽  
Mohd For Mohd Amin ◽  
Masoud Monjezi ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1106 ◽  
Author(s):  
Mohsin Ali Ali Khan ◽  
Adeel Zafar ◽  
Arslan Akbar ◽  
Muhammad Faisal Javed ◽  
Amir Mosavi

For the production of geopolymer concrete (GPC), fly-ash (FA) like waste material has been effectively utilized by various researchers. In this paper, the soft computing techniques known as gene expression programming (GEP) are executed to deliver an empirical equation to estimate the compressive strength fc′ of GPC made by employing FA. To build a model, a consistent, extensive and reliable data base is compiled through a detailed review of the published research. The compiled data set is comprised of 298 fc′ experimental results. The utmost dominant parameters are counted as explanatory variables, in other words, the extra water added as percent FA (%EW), the percentage of plasticizer (%P), the initial curing temperature (T), the age of the specimen (A), the curing duration (t), the fine aggregate to total aggregate ratio (F/AG), the percentage of total aggregate by volume ( %AG), the percent SiO2 solids to water ratio (% S/W) in sodium silicate (Na2SiO3) solution, the NaOH solution molarity (M), the activator or alkali to FA ratio (AL/FA), the sodium oxide (Na2O) to water ratio (N/W) for preparing Na2SiO3 solution, and the Na2SiO3 to NaOH ratio (Ns/No). A GEP empirical equation is proposed to estimate the fc′ of GPC made with FA. The accuracy, generalization, and prediction capability of the proposed model was evaluated by performing parametric analysis, applying statistical checks, and then compared with non-linear and linear regression equations.


Sign in / Sign up

Export Citation Format

Share Document