scholarly journals Gene-Expression Programming-Based Model for Estimating the Compressive Strength of Cement-Fly Ash Stabilized Soil and Parametric Study

2021 ◽  
Vol 6 (12) ◽  
pp. 181
Author(s):  
Van-Ngoc Pham ◽  
Erwin Oh ◽  
Dominic E. L. Ong

The study aims to develop a reliable model using gene-expression programming (GEP) technique for estimating the unconfined compressive strength (UCS) of soil stabilization by cement and fly ash. The model considered the effects of several parameters, including the fly ash characteristics such as calcium oxide (CaO) content, CaO/SiO2 ratio, and loss of ignition. The research results show that the proposed model demonstrates superior performance with a high correlation coefficient (R > 0.955) and low errors. Therefore, the model could be confidently applied in practice for a variety of fly ash qualities. Besides, the parametric study was conducted to examine the effect of fly ash characteristics on the strength of soil stabilization. The study indicates that if the fly ash contains a high amount of calcium oxide, the strength of fly ash stabilized soil is significant. In addition, fly ash could be used in combination with cement to increase the strength of the mixture. A fly ash replacement ratio is suggested from 0.19 to 0.35, corresponding to the total binder used from 10% to 30%. The research findings could help engineers in optimizing the fly ash proportion and estimating the UCS of soil stabilization by cement and fly ash.

2021 ◽  
Vol 2021 ◽  
pp. 1-17 ◽  
Author(s):  
Mohsin Ali Khan ◽  
Shazim Ali Memon ◽  
Furqan Farooq ◽  
Muhammad Faisal Javed ◽  
Fahid Aslam ◽  
...  

Fly ash (FA) is a residual from thermal industries that has been effectively utilized in the production of FA-based geopolymer concrete (FGPC). To avoid time-consuming and costly experimental procedures, soft computing techniques, namely, random forest regression (RFR) and gene expression programming (GEP), are used in this study to develop an empirical model for the prediction of compressive strength of FGPC. A widespread, reliable, and consistent database of compressive strength of FGPC is set up via a comprehensive literature review. The database consists of 298 compressive strength data points. The influential parameters that are considered as input variables for modelling are curing temperature T , curing time t , age of the specimen A , the molarity of NaOH solution M , percent SiO2 solids to water ratio %   S / W in sodium silicate (Na2SiO3) solution, percent volume of total aggregate (   %   A G ), fine aggregate to the total aggregate ratio F / A G , sodium oxide (Na2O) to water ratio N / W in Na2SiO3 solution, alkali or activator to the FA ratio A L / F A , Na2SiO3 to NaOH ratio N s / N o , percent plasticizer ( %   P ), and extra water added as percent FA E W % . RFR is an ensemble algorithm and gives outburst performance as compared to GEP. However, GEP proposed an empirical expression that can be used to estimate the compressive strength of FGPC. The accuracy and performance of both models are evaluated via statistical error checks, and external validation is considered. The proposed GEP equation is used for sensitivity analysis and parametric study and then compared with nonlinear and linear regression expressions.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Sheng-quan Zhou ◽  
Da-wei Zhou ◽  
Yong-fei Zhang ◽  
Wei-jian Wang ◽  
Dongwei Li

To probe into the dynamic mechanical properties of expansive soil stabilized by fly ash and lime under impact load, the split-Hopkinson pressure bar (SHPB) test was carried out in this study. An analysis was made on the dynamic mechanical property and final fracture morphology of stabilized soil, and the failure mechanism was also explored from the perspective of energy dissipation. According to the test results, under the impact pressure of 0.2 MPa, plain soil and pure fly ash-stabilized soil exhibit strong plasticity. After the addition of lime, the stabilized soil shows obvious brittle failure. The dynamic compressive strength and absorbed energy of stabilized soil first increase and then decrease with the change of mix proportions. Both the dynamic compressive strength and the absorbed energy reach the peak value at the content of 20% fly ash and 5% lime (20% F + 5% L). In the process of the test, most of the incident energy is reflected back to the incident bar. The absorbed energy of stabilized soil increases linearly with the rise of dynamic compressive strength, while the absorbed energy is negatively correlated with the fractal dimension. The fractal dimension of pore morphology of the plain soil is lower than that of the fly ash-lime combined stabilized soil when it comes to the two different magnification ratios. The test results indicate that the modifier content of 20% F + 5% L can significantly improve the dynamic mechanical properties of the expansive soil.


2012 ◽  
Vol 45 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Seyyed Mohammad Mousavi ◽  
Pejman Aminian ◽  
Amir Hossein Gandomi ◽  
Amir Hossein Alavi ◽  
Hamed Bolandi

2014 ◽  
Vol 21 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Ismail Zorluer ◽  
Suleyman Gucek

AbstractThe use of waste materials as an additive in soil stabilization has been widespread. This is important in terms of recycling of waste materials and reducing environmental pollution. The objective of this study is to investigate the beneficial reuse of marble dust and fly ash in soil stabilization. Tests were performed on clay soil mixtures amended with marble dust and fly ash. Marble dust was used as an activator due to fly ash being inadequate for self-cementing. Unconfined compressive strength (qu), freeze-thaw, swelling, and California bearing ratio (CBR) tests were conducted to investigate the effect of marble dust and fly ash, curing time, and molding water content on geotechnical parameters. Addition of marble dust and fly ash increased unconfined compressive strength, CBR, and freeze-thaw strength, but these additives decreased swelling potential and grain loss after freeze-thaw. Increasing the curing time results in increased strength of mixtures and decreased grain loss. As a result, this study shows that the geotechnical properties of clay soil are improved with the addition of marble dust and fly ash. This is an economical and environmentally friendly solution.


Sign in / Sign up

Export Citation Format

Share Document