scholarly journals The effects of the post-annealing time on the growth mechanism of Bi2Sr2Ca1Cu2O8+∂ thin films produced on MgO (100) single crystal substrates by pulsed laser deposition (PLD)

2016 ◽  
Vol 42 (5) ◽  
pp. 5778-5784 ◽  
Author(s):  
O. Nane ◽  
B. Özçelik ◽  
D. Abukay
2009 ◽  
Vol 67 ◽  
pp. 65-70 ◽  
Author(s):  
Gaurav Shukla ◽  
Alika K. Khare

TiO2 is a widely studied material for many important applications in areas such as environmental purification, photocatalyst, gas sensors, cancer therapy and high effect solar cell. However, investigations demonstrated that the properties and applications of titanium oxide films depend upon the nature of the crystalline phases present in the films, i.e. anatase and rutile phases. We report on the pulsed laser deposition of high quality TiO2 thin films. Pulsed Laser deposition of TiO2 thin films were performed in different ambient viz. oxygen, argon and vacuum, using a second harmonic of Nd:YAG laser of 6 ns pulse width. These deposited films of TiO2 were further annealed for 5hrs in air at different temperatures. TiO2 thin films were characterized using x-ray diffraction, SEM, photoluminescence, transmittance and reflectance. We observed effect of annealing over structural, morphological and optical properties of TiO2 thin films. The anatase phase of as-deposited TiO2 thin films is found to change into rutile phase with increased annealing temperature. Increase in crystalline behaviour of thin films with post-annealing temperature is also observed. Surface morphology of TiO2 thin films is dependent upon ambient pressure and post- annealing temperature. TiO2 thin films are found to be optically transparent with very low reflectivity hence will be suitable for antireflection coating applications.


2007 ◽  
Vol 14 (02) ◽  
pp. 283-291 ◽  
Author(s):  
YAFAN ZHAO ◽  
CHUANZHONG CHEN ◽  
MINGDA SONG ◽  
JIAN LIU

Pulsed laser deposition (PLD), which is a novel technique in producing thin films in the recent years, shows unique advantages for the deposition of bioactive films. Research states of the technical parameters of the pulsed laser deposited bioactive films, including substrate temperature, atmosphere pressure, energy density, wavelength, post-annealing, target, deposition rate, and thickness of the films, are systematically reviewed. Processing-microstructure-property relationships of bioactive films by pulsed laser deposition are discussed. The application prospect is pointed as well.


2003 ◽  
Vol 123 (9) ◽  
pp. 939-944
Author(s):  
Takeshi Hara ◽  
Tsuyoshi Yoshitake ◽  
Takasi Nishiyama ◽  
Kunihito Nagayama

2003 ◽  
Vol 796 ◽  
Author(s):  
Fumiaki Mitsugi ◽  
Seiji Kanazawa ◽  
Toshikazu Ohkubo ◽  
Yukiharu Nomoto ◽  
Yusaku Takita ◽  
...  

ABSTRACTAn La1-xSrxGa1-y-zMgyCozO3-(x+y+z)/2 (LSGMCO) has attracted much attention because it can be useable as an electrolyte of a solid oxide fuel cell due to its high oxide ion conductivity. We prepared LSGMCO thin films on silica glass and LaAlO3 single crystal substrates by pulsed laser deposition and evaluated their properties. LSGMCO thin films deposited at 800°C were poly-crystal and the deposition pressure affected their surface morphologies. In the case of the LaAlO3 single crystal substrate, a c-axis oriented LSGMCO thin film was obtained. DC conductivity and complex impedance of LSGMCO thin films were measured in vacuum atmosphere to investigate the effect of the crystal orientation on the oxide ion conductivity. It was revealed that resistance at a grain boundary of films is more dominant compare with the grain interior.


Sign in / Sign up

Export Citation Format

Share Document