superconducting properties
Recently Published Documents


TOTAL DOCUMENTS

4023
(FIVE YEARS 308)

H-INDEX

77
(FIVE YEARS 6)

2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Ming-Qiang Ren ◽  
Shu-Ze Wang ◽  
Sha Han ◽  
Can-Li Song ◽  
Xu-Cun Ma ◽  
...  

AbstractThe successful preparation of superconducting alkali fulleride (AxC60, A = K, Rb, Cs) films using state-of-the-art molecular beam epitaxy overcomes the disadvantages of the air-sensitivity and phase separation in bulk AxC60, enabling for the first time a direct investigation of the superconductivity in alkali fullerides on the molecular scale. In this paper, we briefly review recent cryogenic scanning tunneling microscopy results of the structural, electronic, and superconducting properties of the fcc AxC60 films grown on graphitized SiC substrates. Robust s-wave superconductivity is revealed against the pseudogap, electronic correlation, non-magnetic impurities, and merohedral disorder. By controlling the alkali-metal species, film thickness, and electron doping, we systematically tune the C60x− orientational orderings and superconductivity in AxC60 films and then complete a unified phase diagram of superconducting gap size vs electronic correlation and doping. These investigations are conclusive and elucidated that the s-wave superconductivity retains in alkali fullerides despite of the electronic correlation and presence of pseudogap.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Shiv J. Singh ◽  
Mihai I. Sturza

The discovery of iron-based superconductors (FBS) and their superconducting properties has generated huge research interest and provided a very rich physics high Tc family for fundamental and experimental studies. The 1111 (REFeAsO, RE = Rare earth) and 1144 (AEAFe4As4, AE = Ca, Eu; A = K, Rb) families are the two most important families of FBS, which offer the high Tc of 58 K and 36 K with doping and without doping, respectively. Furthermore, the crystal growth of these families is not an easy process, and a lot of efforts have been reported in this direction. However, the preparation of high-quality and suitable-sized samples is still challenging. In this short review, we will summarize the growth of materials with their superconducting properties, especially polycrystals and single crystals, for the 1111 and 1144 families, and make a short comparison between them to understand the developmental issues.


2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Sarah A. Alotaibi ◽  
Yassine Slimani ◽  
Munirah A. Almessiere ◽  
Essia Hannachi ◽  
Fatimah O. Al-qwairi ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7900
Author(s):  
Stanislav I. Bondarenko ◽  
Anatolij I. Prokhvatilov ◽  
Roman Puźniak ◽  
Jarosław Piętosa ◽  
Andrey A. Prokhorov ◽  
...  

Properties of FeTe0.65Se0.35 single crystals, with the onset of critical temperature (Tconset) at 15.5 K, were modified via hydrogenation performed for 10–90 h, at temperatures ranging from 20 to 250 °C. It was found that the tetragonal matrix became unstable and crystal symmetry lowered for the samples hydrogenated already at 200 °C. However, matrix symmetry was not changed and the crystal was not destroyed after hydrogenation at 250 °C. Bulk Tcbulk, determined at the middle of the superconducting transition, which is equal to 12–13 K for the as grown FeTe0.65Se0.35, rose by more than 1 K after hydrogenation. The critical current density studied in magnetic field up to 70 kOe increased 4–30 times as a consequence of hydrogenation at 200 °C for 10 h. Electron paramagnetic resonance measurements also showed higher values of Tcbulk for hydrogenated crystals. Thermal diffusion of hydrogen into the crystals causes significant structural changes, leads to degeneration of crystal quality, and significantly alters superconducting properties. After hydrogenation, a strong correlation was noticed between the structural changes and changes in the parameters characterizing the superconducting state.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012066
Author(s):  
M M Abbas ◽  
A K Jassim

Abstract This work was performed to investigate the effect of sintering time on superconducting properties of Bi1.7In0.3Pb0.3Sr2Ca2Cu3O10+d samples prepared by solid state reaction method. The samples properties have been investigated structurally by X-ray diffraction and morphologically by scanning electron microscopy. Structural analysis showed that two superconducting phases coexist in the samples. High temperature Bi-2223 and low-temperature phase 2212 with orthorhombic structure for all samples. Four point probe method used to study the electrical properties of the samples and the results showed that increasing sintering time yields superconductor samples. The sintering time 140 h improves the microstructure of the superconductor and produces greater size platelets as well as leading to the highest TC value of 113 K and highest oxygen content value. Scanning electron microscopy shows increasing sintering time changed morphology of samples. Moreover plate grains of the high Bi-2223 phase appeared in most micrographs of the superconducting samples.


Sign in / Sign up

Export Citation Format

Share Document