Quasi homoepitaxial growth of modified diamond: Nickel-substrate catalytic multilayer graphene transforming to diamond

2020 ◽  
Vol 46 (8) ◽  
pp. 10885-10892
Author(s):  
Duosheng Li ◽  
Wei Zou ◽  
Wugui Jiang ◽  
Xinyuan Peng ◽  
Shengli Song ◽  
...  
2020 ◽  
Vol 45 (9) ◽  
pp. 7455-7465
Author(s):  
May Ali Alsaffar ◽  
Suraya Abdul Rashid ◽  
Bamidele Victor Ayodele ◽  
Mohd Nizar Hamidon ◽  
Faizah Md Yasin ◽  
...  

Author(s):  
George H. N. Riddle ◽  
Benjamin M. Siegel

A routine procedure for growing very thin graphite substrate films has been developed. The films are grown pyrolytically in an ultra-high vacuum chamber by exposing (111) epitaxial nickel films to carbon monoxide gas. The nickel serves as a catalyst for the disproportionation of CO through the reaction 2C0 → C + CO2. The nickel catalyst is prepared by evaporation onto artificial mica at 400°C and annealing for 1/2 hour at 600°C in vacuum. Exposure of the annealed nickel to 1 torr CO for 3 hours at 500°C results in the growth of very thin continuous graphite films. The graphite is stripped from its nickel substrate in acid and mounted on holey formvar support films for use as specimen substrates.The graphite films, self-supporting over formvar holes up to five microns in diameter, have been studied by bright and dark field electron microscopy, by electron diffraction, and have been shadowed to reveal their topography and thickness. The films consist of individual crystallites typically a micron across with their basal planes parallel to the surface but oriented in different, apparently random directions about the normal to the basal plane.


Author(s):  
M. T. Tinker ◽  
L. W. Hobbs

There is considerable technological interest in oxidation of nickel because of the importance of nickel-base superalloys in high-temperature oxidizing environments. NiO scales on nickel grow classically, by outward diffusion of nickel through the scale, and are among the most studied of oxidation systems. We report here the first extensive characterization by transmission electron microscopy of nickel oxide scales formed on bulk nickel substrates and sectioned both parallel and transversely to the Ni/NiO interface.Electrochemically-polished nickel sheet of 99.995% purity was oxidized at 1273 K in 0.1 MPa oxygen partial pressure for times between 5 s and 25 h. Parallel sections were produced using a combination of electropolishing of the nickel substrate and ion-beam thinning of the scale to any desired depth in the scale. Transverse sections were prepared by encasing stacked strips of oxidized nickel sheet in epoxy resin, sectioning transversely and ion-beam thinning until thin area spanning one or more interfaces was obtained.


2020 ◽  
Author(s):  
Vera Marinova ◽  
Stefan Petrov ◽  
Blagovest Napoleonov ◽  
Jordan Mickovski ◽  
Dimitrina Petrova ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Youngbin Tchoe ◽  
Janghyun Jo ◽  
HoSung Kim ◽  
Heehun Kim ◽  
Hyeonjun Baek ◽  
...  

AbstractWe report monolithic integration of indium arsenide (InAs) nanorods and zinc oxide (ZnO) nanotubes using a multilayer graphene film as a suspended substrate, and the fabrication of dual-wavelength photodetectors with the hybrid configuration of these materials. For the hybrid nanostructures, ZnO nanotubes and InAs nanorods were grown vertically on the top and bottom surfaces of the graphene films by metal-organic vapor-phase epitaxy and molecular beam epitaxy, respectively. The structural, optical, and electrical characteristics of the hybrid nanostructures were investigated using transmission electron microscopy, spectral photoresponse analysis, and current–voltage measurements. Furthermore, the hybrid nanostructures were used to fabricate dual-wavelength photodetectors sensitive to both ultraviolet and mid-infrared wavelengths.


Author(s):  
Mingcan Cui ◽  
Xiaoling Zhong ◽  
Yong Fang ◽  
Haoxuan Sheng ◽  
Tingting Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document