fundamental wave
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 40)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Yue Li ◽  
Ziheng Zhou ◽  
Yijing He ◽  
Hao Li

This Element introduces the exotic wave phenomena arising from the extremely small optical refractive index, and sheds light on the underlying mechanisms, with a primary focus on the basic concepts and fundamental wave physics. The authors reveal the exciting applications of ENZ metamaterials, which have profound impacts over a wide range of fields of science and technology. The sections are organized as follows: in Section 2, the authors demonstrate the extraordinary wave properties in ENZ metamaterials, analyzing the unique wave dynamics and the resulting effects. Section 3 is dedicated to introducing various realization methods of the ENZ metamaterials with periodic and non-periodic styles. The applications of ENZ metamaterials are discussed in Sections 4 and 5, from the perspectives of microwave engineering, optics, and quantum physics. The authors close in Section 6 by presenting an outlook on the development of ENZ metamaterials and discussing the key challenges addressed in future works.


2021 ◽  
Vol 932 ◽  
Author(s):  
Sara Marković ◽  
Vincenzo Armenio

We present results of numerical simulations of a stratified reservoir with a three-layer stratification, subject to an oscillating surface shear stress. We investigate the effect of sloped endwalls on mixing and internal wave adjustment to forcing within the basin, for three different periods of forcing. The simulations are carried out at a laboratory scale, using large-eddy simulation. We solve the three-dimensional Navier–Stokes equations under the Boussinesq approximation using a second-order-accurate finite-volume solver. The model was validated by reproducing experimental results for the response of a reservoir to surface shear stress and resonant frequencies of internal waves. We find interesting combinations of wave modes and mixing under variation of the forcing frequencies and of the inclination of the endwalls. When the frequency of the forcing is close to the fundamental mode-one wave frequency, a resonant internal seiche occurs and the response is characterized by the first vertical mode. For forcing periods twice and three times the fundamental period, the dominant response is in terms of the second vertical mode. Adjustment to forcing via the second vertical mode is accompanied by the cancellation of the fundamental wave and energy transfer to higher-frequency waves. The study shows that the slope of the endwalls dramatically affects the location of mixing, which has a feedback on the wave field by promoting the generation of higher vertical modes.


Author(s):  
Mengshuang Liu ◽  
Xudong Shi ◽  
Chen Yang

In order to study the accurate measurement of electric energy in complex industrial field, a method of harmonic electric energy measurement based on wavelet packet decomposition and reconstruction algorithm, as well as the calculation formula of harmonic power and the principle of harmonic electric energy measurement are proposed. Using db42 wavelet function to carry out harmonic energy metering simulation analysis, the results show that: The fundamental frequency of the simulation signal is 50 Hz, two-layer wavelet packet transform is adopted, the simulation input signals within 40 fundamental wave cycles are taken, and the sampling frequency fs is 800 Hz. Conclusion: The three-phase harmonic energy metering device based on virtual instrument technology has realized the measurement of each harmonic active power and reactive power, and the accuracy reaches 0.2 s.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mudassar Nauman ◽  
Jingshi Yan ◽  
Domenico de Ceglia ◽  
Mohsen Rahmani ◽  
Khosro Zangeneh Kamali ◽  
...  

AbstractNonlinear light sources are central to a myriad of applications, driving a quest for their miniaturisation down to the nanoscale. In this quest, nonlinear metasurfaces hold a great promise, as they enhance nonlinear effects through their resonant photonic environment and high refractive index, such as in high-index dielectric metasurfaces. However, despite the sub-diffractive operation of dielectric metasurfaces at the fundamental wave, this condition is not fulfilled for the nonlinearly generated harmonic waves, thereby all nonlinear metasurfaces to date emit multiple diffractive beams. Here, we demonstrate the enhanced single-beam second- and third-harmonic generation in a metasurface of crystalline transition-metal-dichalcogenide material, offering the highest refractive index. We show that the interplay between the resonances of the metasurface allows for tuning of the unidirectional second-harmonic radiation in forward or backward direction, not possible in any bulk nonlinear crystal. Our results open new opportunities for metasurface-based nonlinear light-sources, including nonlinear mirrors and entangled-photon generation.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 921
Author(s):  
Ilhwan Kim ◽  
Donghwa Lee ◽  
Kwang Jo Lee

The mid-infrared (mid-IR) continuum generation based on broadband second harmonic generation (SHG) (or difference frequency generation) is of great interest in a wide range of applications such as free space communications, environmental monitoring, thermal imaging, high-sensitivity metrology, gas sensing, and molecular fingerprint spectroscopy. The second-order nonlinear optic (NLO) crystals have been spotlighted as a material platform for converting the wavelengths of existing lasers into the mid-IR spectral region or for realizing tunable lasers. In particular, the spectral coverage could be extended to ~19 µm with non-oxide NLO crystals. In this paper, we theoretically and numerically investigated the broadband SHG properties of non-oxide mid-IR crystals in three categories: chalcopyrite semiconductors, defect chalcopyrite, and orthorhombic ternary chalcogenides. The technique is based on group velocity matching between interacting waves in addition to birefringent phase matching. We will describe broadband SHG characteristics in terms of beam propagation directions, spectral positions of resonance, effective nonlinearities, spatial walk-offs between interacting beams, and spectral bandwidths. The results will show that the spectral bandwidths of the fundamental wave allowed for broadband SHG to reach several hundreds of nm. The corresponding SH spectral range spans from 1758.58 to 4737.18 nm in the non-oxide crystals considered in this study. Such broadband SHG using short pulse trains can potentially be applied to frequency up-conversion imaging in the mid-IR region, in information transmission, and in nonlinear optical signal processing.


2021 ◽  
Author(s):  
Alex Dikopoltsev ◽  
Sebastian Weidermann ◽  
Mark Kremer ◽  
Andrea Steinfurth ◽  
Hanan Herzig Sheinfux ◽  
...  

Abstract Anderson localization is a fundamental wave phenomenon predicting that transport in a 1D uncorrelated disordered system comes to a complete halt, experiencing no transport whatsoever. However, in reality, a disordered physical system is always correlated, because it must have a finite spectrum. Common wisdom in the field states that localization is dominant only for wavepackets whose spectral extent resides within the region of the wavenumber span of the disorder. Here, we experimentally observe that Anderson localization can occur and even be dominant for wavepackets residing entirely outside the spectral extent of the disorder. We study the evolution of waves in synthetic photonic lattices containing bandwidth-limited (correlated) disorder, and observe Anderson localization for wavepackets of high wavenumbers centered around twice the mean wavenumber of the disorder spectrum. Likewise, we predict and observe Anderson localization at low wavenumbers, also outside the spectral extent of the disorder, and find that localization there can be as strong as for first-order transitions. This feature is universal, common to all Hermitian wave systems, implying that low-wavenumber wavepackets localize with a short localization length even when the disorder is strictly at high wavenumbers. This understanding suggests that disordered media should be opaque for long-wavelengths even when the disorder is strictly at much shorter length scales. Our results shed light on fundamental aspects of physical disordered systems and offer avenues for employing spectrally-shaped disorder for controlling transport in systems containing disorder.


Author(s):  
Mingcan Cui ◽  
Xiaoling Zhong ◽  
Yong Fang ◽  
Haoxuan Sheng ◽  
Tingting Guo ◽  
...  

Author(s):  
Таtiana М. Tkachenko ◽  
Yulia H. Pilkevich ◽  
Heorhii M. Rozorinov

The basic sources of contamination and obstruction of reservoirs are cleared not enough sewer water of industrial and communal enterprises, large stock-raising complexes, wastes of production; upcast of water and railway transport; wastes of roughing-out of flax, pesticides and other. Сontaminents, getting in natural reservoirs, result in the quality changes of water, that, mainly, appear in the change of physical properties of water, in the change of chemical composition of water, in a presence floating substances on the surface of water and laying of them on the bottom of reservoirs. The increases of population, expansion of old and origin of new cities considerably increased entering of domestic flows internal reservoirs. Synthetic cleansers that is widely used in the way of life contaminate reservoirs in a yet greater degree. In the total the capacity of waters goes down for oxigenating, activity of bacteria that mineralize organic substances is paralysed. The unfavorable ecological state of many freshwater ecosystems inflicts substantial harm to the fish resources of reservoirs and puts under a threat possibility not only to develop fish industry, conducting fish artificially, but also simply to catch her. All of it stimulate to do events in relation to the improvement of the ecological state of fresh reservoirs. Voice vibrations are the important constituent of the ecological monitoring of the biota state of fresh reservoirs. Information is about formation of sound in a reservoir part of that is activity of fishes turns out by means of acoustic sensors, that farther yields to computer treatment. The modern methods of recognition of fish acoustic patterns are based on the standards of signals, with properties of average estimations, or on comparisons of acoustic signals with a standard. It is shown that for creation of standards, as a rule, executed: previous signal processing, extraction of features of acoustic signal. Acoustic signals that act from movable objects – fishes can change depending on objective external terms and physical state of reservoirs. The hard algorithms of recognition of acoustic patterns are characterized high probability of error. In this connection repressing are adaptive algorithms of recognition of acoustic patterns. In the process of forming of standards clarification of software comes true according to the features of acoustic signal. Realization of process of creation of standards allows to determine the measure of functional readiness of parameters and knowledge base for the decision of recognition tasks of acoustic signals. In the process of recognition the probability terms of the correct comparing are set to the standard, on default of that an algorithm stops to be executed and requires additional studies. It requires creation of standards that reflect the characteristic features of fish signals. Presently for authentication mostly choose such pattern of acoustic signals, as period length of signal fundamental wave. It can be determined or by the search of maximal value in an autocorrelation function, or by the search of minimum value in the function of mean value of difference of signal amplitudes, or by the search of difference of two maximal values in the sequence of going into detail wavelet-coefficients. It is shown that for the tasks of recognition of fish acoustic patterns, most exact and requiring the least studies there is presentation of acoustic signal as a set of sign vectors of frames. In detail methodologies of the period selection of fundamental wave of acoustic signal were analysed: SIFT, EFT-А and EFT-WT. Methodology of EFT-WT is characterized absence of the thresholds set in good time; by the rapid search of period of fundamental wave; by absence of dependence on a noise-level, as a certain range of frequencies is investigated. At the same time calculable complication of wavelet transform is relatively high, in this connection it is necessary optimization of calculation algorithms.


2021 ◽  
Author(s):  
Peijin Zhang ◽  
Chuanbing Wang ◽  
Eduard Kontar

<p><span>The solar atmosphere is fluctuated and highly refractive for low frequency waves (<300MHz), the observed features of solar radio sources have indicated the existence of complex propagation effects. The propagation effect has two major parts: refraction and scattering, these two parts have combined influence on the observed source size and position of radio imaging and temporal-frequency features in the radio spectroscopy.</span></p><p>We present a parametric simulation for the propagation effect of the radio wave from solar radio bursts, with the method of parametric simulation, we can build connections between the solar atmosphere plasma condition and the observed radio source properties. By comparing the simulation results with the observed source size and property we estimated the scattering rate and the degree of anisotropic of the background electron, and from the simulation results we propose a possible explanation for the co-spatial phenomena of the fundamental wave and harmonic wave in single frequency.</p>


Sign in / Sign up

Export Citation Format

Share Document