New La3+ doped TiO2 nanofibers for photocatalytic degradation of organic pollutants: Effects of thermal treatment and doping loadings

Author(s):  
Petronela Pascariu ◽  
Corneliu Cojocaru ◽  
Mihaela Homocianu ◽  
Petrisor Samoila ◽  
Andrei Dascalu ◽  
...  
RSC Advances ◽  
2020 ◽  
Vol 10 (45) ◽  
pp. 26639-26645
Author(s):  
Jing Jin ◽  
Wei Song ◽  
Ning Zhang ◽  
Linjia Li ◽  
Hao Liu ◽  
...  

The possible mechanism of enhanced photocatalytic performance of Ag@CDs–TiO2 hybrid NFs.


2015 ◽  
Vol 22 (23) ◽  
pp. 18859-18873 ◽  
Author(s):  
Sahar Hamzezadeh-Nakhjavani ◽  
Omid Tavakoli ◽  
Seyed Parham Akhlaghi ◽  
Zeinab Salehi ◽  
Parvaneh Esmailnejad-Ahranjani ◽  
...  

2019 ◽  
Vol 64 (1) ◽  
pp. 7-18 ◽  
Author(s):  
Masoud Giahi ◽  
◽  
Deepak Pathania ◽  
Shilpi Agarwal ◽  
A. M. Ali Gomaa ◽  
...  

2016 ◽  
Vol 13 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Rani P. Barkul ◽  
Farah-Naaz A. Shaikh ◽  
Sagar D. Delekar ◽  
Meghshyam K. Patil

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Khee Chung Hui ◽  
Hazwani Suhaimi ◽  
Nonni Soraya Sambudi

Abstract Titanium dioxide (TiO2) is commonly used as a photocatalyst in the removal of organic pollutants. However, weaknesses of TiO2 such as fast charge recombination and low visible light usage limit its industrial application. Furthermore, photocatalysts that are lost during the treatment of pollutants create the problem of secondary pollutants. Electrospun-based TiO2 fiber is a promising alternative to immobilize TiO2 and to improve its performance in photodegradation. Some strategies have been employed in fabricating the photocatalytic fibers by producing hollow fibers, porous fibers, composite TiO2 with magnetic materials, graphene oxide, as well as doping TiO2 with metal. The modification of TiO2 can improve the absorption of TiO2 to the visible light area, act as an electron acceptor, provide large surface area, and promote the phase transformation of TiO2. The improvement of TiO2 properties can enhance carrier transfer rate which reduces the recombination and promotes the generation of radicals that potentially degrade organic pollutants. The recyclability of fibers, calcination effect, photocatalytic reactors used, operation parameters involved in photodegradation as well as the commercialization potential of TiO2 fibers are also discussed in this review.


2021 ◽  
Vol 6 (14) ◽  
pp. 3360-3369
Author(s):  
Rani P. Barkul ◽  
Radhakrishna S. Sutar ◽  
Meghshyam K. Patil ◽  
Sagar D. Delekar

Sign in / Sign up

Export Citation Format

Share Document