Corrigendum to “Josef Stefan and his evaporation–diffusion tube—The Stefan diffusion problem” [Chem. Eng. Sci. 75 (2012) 279–281]

2012 ◽  
Vol 80 ◽  
pp. 173 ◽  
Author(s):  
Jovan Mitrovic
2020 ◽  
Vol 26 ◽  
pp. 78
Author(s):  
Thirupathi Gudi ◽  
Ramesh Ch. Sau

We study an energy space-based approach for the Dirichlet boundary optimal control problem governed by the Laplace equation with control constraints. The optimality system results in a simplified Signorini type problem for control which is coupled with boundary value problems for state and costate variables. We propose a finite element based numerical method using the linear Lagrange finite element spaces with discrete control constraints at the Lagrange nodes. The analysis is presented in a combination for both the gradient and the L2 cost functional. A priori error estimates of optimal order in the energy norm is derived up to the regularity of the solution for both the cases. Theoretical results are illustrated by some numerical experiments.


2020 ◽  
Vol 20 (4) ◽  
pp. 717-725 ◽  
Author(s):  
Vidar Thomée

AbstractFor a spatially periodic convection-diffusion problem, we analyze a time stepping method based on Lie splitting of a spatially semidiscrete finite element solution on time steps of length k, using the backward Euler method for the diffusion part and a stabilized explicit forward Euler approximation on {m\geq 1} intervals of length {k/m} for the convection part. This complements earlier work on time splitting of the problem in a finite difference context.


2020 ◽  
Vol 28 (3) ◽  
pp. 147-160
Author(s):  
Andrea Bonito ◽  
Diane Guignard ◽  
Ashley R. Zhang

AbstractWe consider the numerical approximation of the spectral fractional diffusion problem based on the so called Balakrishnan representation. The latter consists of an improper integral approximated via quadratures. At each quadrature point, a reaction–diffusion problem must be approximated and is the method bottle neck. In this work, we propose to reduce the computational cost using a reduced basis strategy allowing for a fast evaluation of the reaction–diffusion problems. The reduced basis does not depend on the fractional power s for 0 < smin ⩽ s ⩽ smax < 1. It is built offline once for all and used online irrespectively of the fractional power. We analyze the reduced basis strategy and show its exponential convergence. The analytical results are illustrated with insightful numerical experiments.


SAGE Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 215824402110269
Author(s):  
Lang Liang

The Bass model is the most popular model for forecasting the diffusion process of a new product. However, the controlling parameters in it are unknown in practice and need to be determined in advance. Currently, the estimation of the controlling parameters has been approached by various techniques. In this case, a novel optimization-based parameter estimation (OPE) method for the Bass model is proposed in the theoretical framework of system dynamics ( SD). To do this, the SD model of the Bass differential equation is first established and then the corresponding optimization mathematical model is formulated by introducing the controlling parameters as design variable and the discrepancy of the adopter function to the reference value as objective function. Using the VENSIM software, the present SD optimization model is solved, and its effectiveness and accuracy are demonstrated by two examples: one involves the exact solution and another is related to the actual user diffusion problem from Chinese Mobile. The results show that the present OPE method can produce higher predicting accuracy of the controlling parameters than the nonlinear weighted least squares method and the genetic algorithms. Moreover, the reliability interval of the estimated parameters and the goodness of fitting of the optimal results are given as well to further demonstrate the accuracy of the present OPE method.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Haili Qiao ◽  
Aijie Cheng

AbstractIn this paper, we consider the time fractional diffusion equation with Caputo fractional derivative. Due to the singularity of the solution at the initial moment, it is difficult to achieve an ideal convergence rate when the time discretization is performed on uniform meshes. Therefore, in order to improve the convergence order, the Caputo time fractional derivative term is discretized by the {L2-1_{\sigma}} format on non-uniform meshes, with {\sigma=1-\frac{\alpha}{2}}, while the spatial derivative term is approximated by the classical central difference scheme on uniform meshes. According to the summation formula of positive integer k power, and considering {k=3,4,5}, we propose three non-uniform meshes for time discretization. Through theoretical analysis, different time convergence orders {O(N^{-\min\{k\alpha,2\}})} can be obtained, where N denotes the number of time splits. Finally, the theoretical analysis is verified by several numerical examples.


2021 ◽  
Vol 40 (4) ◽  
Author(s):  
Khallih Ahmed Blal ◽  
Brahim Allam ◽  
Zoubida Mghazli

AbstractWe are interested in the discretization of a diffusion problem with highly oscillating coefficient, by a multi-scale finite-element method (MsFEM). The objective of this method is to capture the multi-scale structure of the solution via local basis functions which contain the essential information on small scales. In this paper, we perform an a posteriori analysis of this discretization. The main result consists of building error indicators with respect to both small and large meshes used in this method. We present a numerical test in which the experiments are in good coherency with the results of analysis.


Sign in / Sign up

Export Citation Format

Share Document