Model-based performance analysis and scale-up of membrane adsorbers with a cassettes format designed for parallel operation

2018 ◽  
Vol 192 ◽  
pp. 103-113 ◽  
Author(s):  
Eirini Velali ◽  
Birgit Stute ◽  
Martin Leuthold ◽  
Eric von Lieres
2018 ◽  
Vol 12 (4) ◽  
pp. 32
Author(s):  
SANTOSH DADI HARIHARA ◽  
KRISHNA MOHAN PILLUTLA GOPALA ◽  
LATHA MAKKENA MADHAVI ◽  
◽  
◽  
...  

2011 ◽  
Author(s):  
J. A. Hernández ◽  
J. D. Ospina ◽  
D. Villada ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
...  

2002 ◽  
Vol 45 (6) ◽  
pp. 169-176 ◽  
Author(s):  
S. Salem ◽  
D. Berends ◽  
J.J. Heijnen ◽  
M.C.M. van Loosdrecht

Mathematical modelling is considered a time and cost-saving tool for evaluation of new wastewater treatment concepts. Modelling can help to bridge the gap between lab and full-scale application. Bio-augmentation can be used to obtain nitrification in activated sludge systems with a limited aerobic sludge retention time. In the present study the potential for augmenting the endogenous nitrifying population is evaluated. Implementing a nitrification reactor in the sludge return line fed with sludge liquor with a high ammonia concentration leads to augmentation of the native nitrifying population. Since the behaviour of nitrifiers is relatively well known, a choice was made to evaluate this new concept mainly based on mathematical modelling. As an example an existing treatment plant (wwtp Walcheren, The Netherlands) that needed to be upgraded was used. A mathematical model, based on the TUDP model and implemented in AQUASIM was developed and used to evaluate the potential of this bioaugmentation in the return sludge line. A comparison was made between bio-augmentation and extending the existing aeration basins and anoxic tanks. The results of both modified systems were compared to give a quantitative basis for evaluation of benefits gained from such a system. If the plant is upgraded by conventional extension it needs an increase in volume of about 225%; using a bioaugmentation in the return sludge line the total volume of the tanks needs to be expanded by only 75% (including the side stream tanks). Based on the modelling results a decision was made to implement the bioaugmentation concept at full scale without further pilot scale testing, thereby strongly decreasing the scale-up period for this process.


2001 ◽  
Author(s):  
Stephen M. Charlwood ◽  
Jon P. Mangnall ◽  
Steven F. Quigley

2020 ◽  
Vol 250 ◽  
pp. 117006
Author(s):  
Eirini Velali ◽  
Jannik Dippel ◽  
Birgit Stute ◽  
Sebastian Handt ◽  
Thomas Loewe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document