scholarly journals Core-shell structured AP/Fe3O4 composite with enhanced catalytic thermal decomposition property: fabrication and mechanism study

2021 ◽  
pp. 116899
Author(s):  
Shao-Bo Cao ◽  
Lin-Yu Zhou ◽  
Cai Zhang ◽  
Liang-Liang Zhang ◽  
Guo-Lei Xiang ◽  
...  
Author(s):  
Ali Anus ◽  
Mahshab Sheraz ◽  
Sangjae Jeong ◽  
Eui-kun Kim ◽  
Seungdo Kim

2014 ◽  
Vol 1064 ◽  
pp. 89-94
Author(s):  
Mohammed Ibrahim Mohamed

In this paper, the novel structure of carbon nanocoils were synthesized successfully by catalytic thermal decomposition of acetylene in CVD reactor under inert atmospheric pressure. Fe as a catalyst coated alumina beads used as substrate , both were placed inside a cylindrical shape stainless steel mesh SSC and located at the mid of CVD reactor. Preliminary study of application of prepared carbon nanocoil in synthesis of photodiode showed that the photodiode has a good rectification and the forward current obeys to tunneling-recombination model.


2020 ◽  
Vol 20 (8) ◽  
pp. 5223-5238
Author(s):  
Vanita Sharma ◽  
P. Jeevanandam

Considerable work is being carried out recently to develop nanomaterials which can act as photocatalyst under sunlight. In the present study, ZnO@CuS core–shell nanocomposites were synthesized and their photocatalytic activity has been investigated. The nanocomposites were prepared by thermal decomposition of a single molecular precursor, cyclo-tri-μ-thioacetamide-tris(chlorocopper(I)) complex ([Cu3TAA3Cl3]), in the presence of ZnO nanorods in diphenyl ether at 200 °C. The effect of reaction time and precursor concentration on copper sulfide shell formation have been investigated. The ZnO@CuS core–shell nanocomposites were characterized using different techniques such as XRD, FE-SEM, TEM, FT-IR, UV-Vis, DRS and XPS. As compared to bare ZnO nanorods, the ZnO@CuS nanocomposites show better photocatalytic activity towards degradation of congo red in an aqueous solution under sunlight.


Sign in / Sign up

Export Citation Format

Share Document