Synthesis of ZnO@CuS Core–Shell Nanocomposites by Thermal Decomposition Method and Their Photocatalytic Application

2020 ◽  
Vol 20 (8) ◽  
pp. 5223-5238
Author(s):  
Vanita Sharma ◽  
P. Jeevanandam

Considerable work is being carried out recently to develop nanomaterials which can act as photocatalyst under sunlight. In the present study, ZnO@CuS core–shell nanocomposites were synthesized and their photocatalytic activity has been investigated. The nanocomposites were prepared by thermal decomposition of a single molecular precursor, cyclo-tri-μ-thioacetamide-tris(chlorocopper(I)) complex ([Cu3TAA3Cl3]), in the presence of ZnO nanorods in diphenyl ether at 200 °C. The effect of reaction time and precursor concentration on copper sulfide shell formation have been investigated. The ZnO@CuS core–shell nanocomposites were characterized using different techniques such as XRD, FE-SEM, TEM, FT-IR, UV-Vis, DRS and XPS. As compared to bare ZnO nanorods, the ZnO@CuS nanocomposites show better photocatalytic activity towards degradation of congo red in an aqueous solution under sunlight.

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 165
Author(s):  
Sandip Madhukar Deshmukh ◽  
Mohaseen S. Tamboli ◽  
Hamid Shaikh ◽  
Santosh B. Babar ◽  
Dipak P. Hiwarale ◽  
...  

In the present work, we have reported a facile and large-scale synthesis of TiO2 nanoparticles (NPs) through urea-assisted thermal decomposition of titanium oxysulphate. We have successfully synthesized TiO2 NPs by using this effective route with different weight ratios of titanium oxysulphate: urea. The structures and properties of TiO2 NPs were confirmed by scanning electron microscope) (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), ultra violet–visible spectroscopy (UV-vis), and photoluminescence (Pl) techniques. XRD demonstrated that TiO2 NPs holds of anatase crystal phase with crystallizing size 14–19 nm even after heating at 600 °C. TGA, SEM, and TEM images reveal urea’s role, which controls the size, morphology, and aggregation of TiO2 NPs during the thermal decomposition. These TiO2 NPs were employed for photodegradation of Methyl Orange (MO) in the presence of ultraviolet (UV) radiation. An interesting find was that the TiO2 NPs exhibited better photocatalytic activity and excellent recycling stability over several photodegradation cycles. Furthermore, the present method has a great perspective to be used as an efficient method for large-scale synthesis of TiO2 NPs.


Author(s):  
Mahboubeh Rabbani ◽  
Javad Shokrayian ◽  
Rahmatollah Rahimi ◽  
Rezvaneh Amrollahi

Abstract In this study, Zinc Oxide and Silver and Copper-doped Zinc Oxide nanorods were synthesized by a simple template-free precipitation technique. In addition, meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS4) was prepared and immobilized on ZnO nanorods (TPPS/ZnO). The synthesized photocatalysts were characterized by various techniques such as X-Ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), UV-visible Spectroscopy, Diffuse Reflectance Spectroscopy (DRS), and Fourier Transform Infrared Spectroscopy (FT-IR). The potential of the obtained photocatalysts in the degradation of methylene blue was investigated under UV and visible light irradiation. The results revealed that the photocatalytic activity of TPPS/ZnO was higher than those of the pure ZnO and doped ZnO under visible light irradiation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. Rajabi-Moghaddam ◽  
M. R. Naimi-Jamal ◽  
M. Tajbakhsh

AbstractIn the present work, an attempt has been made to synthesize the 1,2,3-triazole derivatives resulting from the click reaction, in a mild and green environment using the new copper(II)-coated magnetic core–shell nanoparticles Fe3O4@SiO2 modified by isatoic anhydride. The structure of the catalyst has been determined by XRD, FE-SEM, TGA, VSM, EDS, and FT-IR analyzes. The high efficiency and the ability to be recovered and reused for at least up to 6 consecutive runs are some superior properties of the catalyst.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 117
Author(s):  
Zahir Muhammad ◽  
Farman Ali ◽  
Muhammad Sajjad ◽  
Nisar Ali ◽  
Muhammad Bilal ◽  
...  

Degradation of organic dyes and their byproducts by heterogeneous photocatalysts is an essential process, as these dyes can be potentially discharged in wastewater and threaten aquatic and xerophyte life. Therefore, their complete mineralization into nontoxic components (water and salt) is necessary through the process of heterogeneous photocatalysis. In this study, Zr/CrO2 (Zirconium-doped chromium IV oxide) nanocomposite-based photocatalysts with different compositions (1, 3, 5, 7 & 9 wt.%) were prepared by an environmentally friendly, solid-state reaction at room temperature. The as-prepared samples were calcined under air at 450 °C in a furnace for a specific period of time. The synthesis of Zr/CrO2 photocatalysts was confirmed by various techniques, including XRD, SEM, EDX, FT-IR, UV-Vis, and BET. The photocatalytic properties of all samples were tested towards the degradation of methylene blue and methyl orange organic dyes under UV light. The results revealed a concentration-dependent photocatalytic activity of photocatalysts, which increased the amount of dopant (up to 5 wt.%). However, the degradation efficiency of the catalysts decreased upon further increasing the amount of dopant due to the recombination of holes and photoexcited electrons.


Sign in / Sign up

Export Citation Format

Share Document