Three-state one-dimensional cellular automata with memory

2004 ◽  
Vol 21 (4) ◽  
pp. 809-834 ◽  
Author(s):  
Ramón Alonso-Sanz ◽  
Margarita Martı́n
2004 ◽  
Vol 14 (09) ◽  
pp. 3217-3248 ◽  
Author(s):  
RAMÓN ALONSO-SANZ

Standard Cellular Automata (CA) are ahistoric (memoryless): i.e. the new state of a cell depends on the neighborhood configuration only at the preceding time step. This article introduces an extension to the standard framework of CA by considering automata implementing memory capabilities. While the update rules of the CA remains the same, each site remembers a weighted mean of all its past states, with a decreasing weight of states farther in the past. The historic weighting is defined by a geometric series of coefficients based on a memory factor (α). This paper considers the time evolution of one-dimensional range-two CA with memory.


2002 ◽  
Vol 12 (01) ◽  
pp. 205-226 ◽  
Author(s):  
RAMÓN ALONSO-SANZ ◽  
MARGARITA MARTÍN

Standard Cellular Automata (CA) are ahistoric (memoryless): i.e. the new state of a cell depends on the neighborhood configuration only at the preceding time step. This article introduces an extension to the standard framework of CA by considering automata implementing memory capabilities. While the update rules of the CA remain the same, each site remembers a weighted mean of all its past states. The historic weighting is defined by a geometric series of coefficients based on a memory factor (α). The time evolution of one-dimensional CA with memory starting with a single live cell is studied. It is found that for α ≤ 0.5, the evolution corresponds to the standard (nonweighted) one, while for α > 0.5, there is a gradual decrease in the width of the evolving pattern, apart from discontinuities which sometimes may occur for certain rules and α values.


2004 ◽  
Vol 15 (10) ◽  
pp. 1461-1470 ◽  
Author(s):  
JUAN R. SÁNCHEZ ◽  
RAMÓN ALONSO-SANZ

Standard Cellular Automata (CA) are ahistoric (memoryless Markov process), i.e., the new state of a cell depends on the neighborhood configuration only at the preceding time step. This article considers the fractal and multifractal properties of an extension to the standard framework of CA implemented by the inclusion of memory capabilities. Thus, in CA with memory, while the update rules of the CA remain unaltered, historic memory of all past iterations is retained by featuring each cell by a summary of all its past states. A study is made of the effect of historic memory on the multifractal dynamical characteristics of one-dimensional cellular automata operating under one of the most studied rules, rule 90, which is well known to display a rich complex behavior.


2012 ◽  
Vol 22 (02) ◽  
pp. 1250023 ◽  
Author(s):  
GENARO J. MARTÍNEZ ◽  
ANDREW ADAMATZKY ◽  
RAMON ALONSO-SANZ

We show techniques of analyzing complex dynamics of cellular automata (CA) with chaotic behavior. CA are well-known computational substrates for studying emergent collective behavior, complexity, randomness and interaction between order and chaotic systems. A number of attempts have been made to classify CA functions on their space-time dynamics and to predict the behavior of any given function. Examples include mechanical computation, λ and Z-parameters, mean field theory, differential equations and number conserving features. We aim to classify CA based on their behavior when they act in a historical mode, i.e. as CA with memory. We demonstrate that cell-state transition rules enriched with memory quickly transform a chaotic system converging to a complex global behavior from almost any initial condition. Thus, just in few steps we can select chaotic rules without exhaustive computational experiments or recurring to additional parameters. We provide an analysis of well-known chaotic functions in one-dimensional CA, and decompose dynamics of the automata using majority memory exploring glider dynamics and reactions.


2014 ◽  
Vol 24 (09) ◽  
pp. 1450116 ◽  
Author(s):  
Shigeru Ninagawa ◽  
Andrew Adamatzky ◽  
Ramón Alonso-Sanz

We study elementary cellular automata with memory. The memory is a weighted function averaged over cell states in a time interval, with a varying factor which determines how strongly a cell's previous states contribute to the cell's present state. We classify selected cell-state transition functions based on Lempel–Ziv compressibility of space-time automaton configurations generated by these functions and the spectral analysis of their transitory behavior. We focus on rules 18, 22, and 54 because they exhibit the most intriguing behavior, including computational universality. We show that a complex behavior is observed near the nonmonotonous transition to null behavior (rules 18 and 54) or during the monotonic transition from chaotic to periodic behavior (rule 22).


Complexity ◽  
2014 ◽  
Vol 20 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Ramón Alonso-Sanz

Sign in / Sign up

Export Citation Format

Share Document