Bifurcation and basin stability of an SIR epidemic model with limited medical resources and switching noise

2021 ◽  
Vol 152 ◽  
pp. 111423
Author(s):  
Wei Wei ◽  
Wei Xu ◽  
Yi Song ◽  
Jiankang Liu
2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Caijuan Yan ◽  
Jianwen Jia ◽  
Zhen Jin

The stability of the SIR epidemic model with information variable and limited medical resources was studied. When the basic reproduction ratioℛ0<1, there exists the disease-free equilibrium and when the basic reproduction ratioℛ0>1, we obtain the sufficient conditions of the existence of the endemic equilibrium. The local asymptotical stability of equilibrium is verified by analyzing the eigenvalues and using the Routh-Hurwitz criterion. We also discuss the global asymptotical stability of the endemic equilibrium by autonomous convergence theorem. A numerical analysis is given to show the effectiveness of the main results.


2012 ◽  
Vol 8 (2) ◽  
Author(s):  
Fandy Fandy ◽  
Andi Fajeriani Wyrasti ◽  
Tri Widjajanti

<em>Stability and equilibrium of malaria&rsquo;s epidemics in Manokwari Barat district based on SIR epidemic model will be discussed in this paper. The SIR epidemic model can be applied to make a model of endemic diseases like malaria. Based on this research, there are 2 types of the equilibrium of malaria&rsquo;s epidemics in Manokwari Barat District, endemic and non endemic point.</em>


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaodong Wang ◽  
Chunxia Wang ◽  
Kai Wang

AbstractIn this paper, we study a novel deterministic and stochastic SIR epidemic model with vertical transmission and media coverage. For the deterministic model, we give the basic reproduction number $R_{0}$ R 0 which determines the extinction or prevalence of the disease. In addition, for the stochastic model, we prove existence and uniqueness of the positive solution, and extinction and persistence in mean. Furthermore, we give numerical simulations to verify our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


Sign in / Sign up

Export Citation Format

Share Document