final size
Recently Published Documents


TOTAL DOCUMENTS

449
(FIVE YEARS 133)

H-INDEX

34
(FIVE YEARS 7)

Author(s):  
Ágnes Backhausz ◽  
István Z. Kiss ◽  
Péter L. Simon

AbstractA key factor in the transmission of infectious diseases is the structure of disease transmitting contacts. In the context of the current COVID-19 pandemic and with some data based on the Hungarian population we develop a theoretical epidemic model (susceptible-infected-removed, SIR) on a multilayer network. The layers include the Hungarian household structure, with population divided into children, adults and elderly, as well as schools and workplaces, some spatial embedding and community transmission due to sharing communal spaces, service and public spaces. We investigate the sensitivity of the model (via the time evolution and final size of the epidemic) to the different contact layers and we map out the relation between peak prevalence and final epidemic size. When compared to the classic compartmental model and for the same final epidemic size, we find that epidemics on multilayer network lead to higher peak prevalence meaning that the risk of overwhelming the health care system is higher. Based on our model we found that keeping cliques/bubbles in school as isolated as possible has a major effect while closing workplaces had a mild effect as long as workplaces are of relatively small size.


Author(s):  
Kaylee M. Wells ◽  
Mary Baumel ◽  
Catherine D. McCusker

The size and shape of the tetrapod limb play central roles in their functionality and the overall physiology of the organism. In this minireview we will discuss observations on mutant animal models and humans, which show that the growth and final size of the limb is most impacted by factors that regulate either limb bud patterning or the elongation of the long bones. We will also apply the lessons that have been learned from embryos to how growth could be regulated in regenerating limb structures and outline the challenges that are unique to regenerating animals.


2022 ◽  
Vol 7 (4) ◽  
pp. 5616-5633
Author(s):  
Rebecca C. Tyson ◽  
◽  
Noah D. Marshall ◽  
Bert O. Baumgaertner ◽  
◽  
...  

<abstract><p>Public opinion and opinion dynamics can have a strong effect on the transmission rate of an infectious disease for which there is no vaccine. The coupling of disease and opinion dynamics however, creates a dynamical system that is complex and poorly understood. We present a simple model in which susceptible groups adopt or give up prophylactic behaviour in accordance with the influence related to pro- and con-prophylactic communication. This influence varies with disease prevalence. We observe how the speed of the opinion dynamics affects the total size and peak size of the epidemic. We find that more reactive populations will experience a lower peak epidemic size, but possibly a larger final size and more epidemic waves, and that an increase in polarization results in a larger epidemic.</p></abstract>


2022 ◽  
Vol 2148 (1) ◽  
pp. 012013
Author(s):  
Zhong Xiang ◽  
Yujia Shen ◽  
Zhitao Cheng ◽  
Miao Ma ◽  
Feng Lin

Abstract Printed fabric patterns contain multiple repeat pattern primitives, which have a significant impact on fabric pattern design in the textile industry. The pattern primitive is often composed of multiple elements, such as color, form, and texture structure. Therefore, the more pattern elements it contains, the more complex the primitive is. In order to segment fabric primitives, this paper proposes a novel convolutional neural network (CNN) method with spatial pyramid pooling module as a feature extractor, which enables to learn the pattern feature information and determine whether the printed fabric has periodic pattern primitives. Furthermore, by choosing pair of activation peaks in a filter, a set of displacement vectors can be calculated. The activation peaks that are most accordant with the optimum displacement vector contribute to pick out the final size of primitives. The results show that the method with the powerful feature extraction capabilities of the CNN can segment the periodic pattern primitives of complex printed fabrics. Compared with the traditional algorithm, the proposed method has higher segmentation accuracy and adaptability.


2021 ◽  
Author(s):  
Minako Izutsu ◽  
Devin M. Lake ◽  
Zachary W. D. Matson ◽  
Jack P. Dodson ◽  
Richard E. Lenski

Population bottlenecks are common in nature, and they can impact the rate of adaptation in evolving populations. On the one hand, each bottleneck reduces the genetic variation that fuels adaptation. On the other hand, fewer founders can undergo more generations and leave more descendants in a resource-limited environment, which allows surviving beneficial mutations to spread more quickly. Here we investigate the impact of repeated bottlenecks on the dynamics of adaptation in experimental populations of Escherichia coli. We propagated 48 populations under four dilution regimes (2-, 8-, 100-, and 1000-fold), all reaching the same final size each day, for 150 days. A simple model in which adaptation is limited by the supply rate of beneficial mutations predicts that fitness gains should be maximized with ~8-fold dilutions. The model also assumes that selection acts only on the overall growth rate and is otherwise identical across dilution regimes. However, we found that selection in the 2-fold regime was qualitatively different from the other treatments. Moreover, we observed earlier and greater fitness gains in the populations subjected to 100- and 1000-fold dilutions than in those that evolved in the 8 fold regime. We also ran simulations using parameters estimated independently from a long-term experiment using the same ancestral strain and environment. The simulations produced dynamics similar to our empirical results under these regimes, and they indicate that the simple model fails owing to the assumption that the supply of beneficial mutations limits adaptation.


2021 ◽  
Author(s):  
David Choy Buentello ◽  
Lina Sophie Koch ◽  
Grissel Trujillo-de Santiago ◽  
Mario Moisés Alvarez ◽  
Kerensa Broersen

The use of organoids has become increasingly popular recently due to their self-organizing abilities, which facilitate developmental and disease modeling. Various methods have been described to create embryoid bodies (EBs) generated from embryonic or pluripotent stem cells but with varying levels of differentiation success and producing organoids of variable size. Commercial ultra-low attachment (ULA) V-bottom well plates are frequently used to generate EBs. These plates are relatively expensive and not as widely available as standard concave well plates. Here, we describe a cost-effective and low labor-intensive method that creates homogeneous EBs at high yield in standard V- and U-bottom well plates by applying an anti-adherence solution to reduce surface attachment, followed by centrifugation to enhance cellular aggregation. We also explore the effect of different seeding densities, in the range of 1 to 11 ×10 3 cells per well, for the fabrication of neuroepithelial EBs. Our results show that the use of V-bottom well plates briefly treated with anti-adherent solution (for 5 min at room temperature) consistently yields functional neural EBs in the range of seeding densities from 5 to 11×10 3 cells per well. A brief post-seeding centrifugation step further enhances EB establishment. EBs fabricated using centrifugation exhibited lower variability in their final size than their non-centrifuged counterparts, and centrifugation also improved EB yield. The span of conditions for reliable EB production is narrower in U-bottom wells than in V-bottom wells (i.e., seeding densities between 7×10 3 and 11×10 3 and using a centrifugation step). We show that EBs generated by the protocols introduced here successfully developed into neural organoids and expressed the relevant markers associated with their lineages


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0257407
Author(s):  
Michael S. Blouin ◽  
Madeleine C. Wrey ◽  
Stephanie R. Bollmann ◽  
James C. Skaar ◽  
Ronald G. Twibell ◽  
...  

Salmonid fish raised in hatcheries often have lower fitness (number of returning adult offspring) than wild fish when both spawn in the wild. Body size at release from hatcheries is positively correlated with survival at sea. So one explanation for reduced fitness is that hatcheries inadvertently select for trait values that enhance growth rate under the unnatural environment of a hatchery, but that are maladaptive in the wild environment. A simple prediction of this hypothesis is that juveniles of hatchery origin should grow more quickly than fish of wild origin under hatchery conditions, but should have lower survival under wild conditions. We tested that hypothesis using multiple full sibling families of steelhead (Oncorhynchus mykiss) that were spawned using either two wild parents (WxW) or two first-generation hatchery (HxH) parents. Offspring from all the families were grown together under hatchery conditions and under semi-natural conditions in artificial streams. HxH families grew significantly faster in the hatchery, but had significantly lower survival in the streams. That we see this tradeoff after only a single generation of selection suggests that the traits involved are under very strong selection. We also considered one possible alteration to the hatchery environment that might reduce the intensity of selection among families in size at release. Here we tested whether reducing the fat content of hatchery feed would reduce the variance among families in body size. Although fish raised under a low-fat diet were slightly smaller, the variation among families in final size was unchanged. Thus, there is no evidence that reducing the fat content of hatchery feed would reduce the opportunity for selection among families on size at release.


2021 ◽  
Vol 23 (3) ◽  
pp. 12-14
Author(s):  
U.K. Makhmanov ◽  
A.M. Kokhkharov ◽  
Sh.A. Esanov ◽  
B.A. Aslonov ◽  
B.A. Sindarov ◽  
...  

The dynamics of changes in the values of the refractive index of solutions of C60 in xylene at various concentrations has been studied by the refractometric method. It was found that the deviation from the linear form of the dependence of the refractive index on the C60 concentration occurs at a C60 concentration of 1.8 mg/ml. The deviation is associated with the largest number of molecular interactions between C60−C60 and the formation of large nanoclusters on their basis in solution. It was found by the dynamic light scattering (DLS) that the final size of C60 nanoclusters in solution depends on the initial concentration of the solute. A higher initial concentration of C60 leads to the synthesis of nanoclusters with a larger diameter. Using the method of optical spectroscopy, the processes of self-organization of fullerene C60 molecules in a xylene solution in time are studied. The character of stability of synthesized fullerene nanoclusters in solution is discussed. The results obtained are of particular importance for numerous applications of nanotechnology for understanding self-assembly processes and the development of new nanomaterials.


2021 ◽  
Vol 2 (6) ◽  
pp. 237
Author(s):  
Kanon Nakazawa ◽  
Satoshi Okuzumi ◽  
Kosuke Kurosawa ◽  
Sunao Hasegawa

Abstract A projectile impact onto a granular target produces an ejecta curtain with heterogeneous material distribution. Understanding how the heterogeneous pattern forms is potentially important for understanding how crater rays form. Previous studies predicted that the pattern formation is induced by inelastic collisions of ejecta particles in early stages of crater formation and terminated by the ejecta’s expanding motion. In this study, we test this prediction based on a hypervelocity impact experiment together with N-body simulations where the trajectories of inelastically colliding granular particles are calculated. Our laboratory experiment suggests that pattern formation is already completed on a timescale comparable to the geometrical expansion of the ejecta curtain, which is ∼10 μs in our experiment. Our simulations confirm the previous prediction that the heterogeneous pattern grows through initial inelastic collisions of particle clusters and subsequent geometric expansion with no further cluster collisions. Furthermore, to better understand the two-stage evolution of the mesh pattern, we construct a simple analytical model that assumes perfect coalescence of particle clusters upon collision. The model shows that the pattern formation is completed on the timescale of the system’s expansion independently of the initial conditions. The model also reproduces the final size of the clusters observed in our simulations as a function of the initial conditions. It is known that particles in the target are ejected at lower speeds with increased distance to the impact point. The difference in the ejection speed of the particles may result in the evolution of the mesh pattern into rays.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Katrin Strassburger ◽  
Marilena Lutz ◽  
Sandra Müller ◽  
Aurelio A. Teleman

AbstractMost cells in a developing organ stop proliferating when the organ reaches a correct, final size. The underlying molecular mechanisms are not understood. We find that in Drosophila the hormone ecdysone controls wing disc size. To study how ecdysone affects wing size, we inhibit endogenous ecdysone synthesis and feed larvae exogenous ecdysone in a dose-controlled manner. For any given ecdysone dose, discs stop proliferating at a particular size, with higher doses enabling discs to reach larger sizes. Termination of proliferation coincides with a drop in TORC1, but not Dpp or Yki signaling. Reactivating TORC1 bypasses the termination of proliferation, indicating that TORC1 is a main downstream effector causing proliferation termination at the maximal ecdysone-dependent size. Experimental manipulation of Dpp or Yki signaling can bypass proliferation termination in hinge and notum regions, but not the pouch, suggesting that the mechanisms regulating proliferation termination may be distinct in different disc regions.


Sign in / Sign up

Export Citation Format

Share Document