scholarly journals Global dynamics of a novel deterministic and stochastic SIR epidemic model with vertical transmission and media coverage

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaodong Wang ◽  
Chunxia Wang ◽  
Kai Wang

AbstractIn this paper, we study a novel deterministic and stochastic SIR epidemic model with vertical transmission and media coverage. For the deterministic model, we give the basic reproduction number $R_{0}$ R 0 which determines the extinction or prevalence of the disease. In addition, for the stochastic model, we prove existence and uniqueness of the positive solution, and extinction and persistence in mean. Furthermore, we give numerical simulations to verify our results.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yanan Zhao ◽  
Daqing Jiang

We discuss a stochastic SIR epidemic model with vaccination. We investigate the asymptotic behavior according to the perturbation and the reproduction numberR0. We deduce the globally asymptotic stability of the disease-free equilibrium whenR0≤ 1and the perturbation is small, which means that the disease will die out. WhenR0>1, we derive that the disease will prevail, which is measured through the difference between the solution and the endemic equilibrium of the deterministic model in time average. The key to our analysis is choosing appropriate Lyapunov functions.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650042 ◽  
Author(s):  
Yanan Zhao ◽  
Daqing Jiang

In this paper, we introduce stochasticity into an SIR epidemic model with vaccination. The stochasticity in the model is a standard technique in stochastic population modeling. When the perturbations are small, by the method of stochastic Lyapunov functions, we carry out a detailed analysis on the dynamical behavior of the stochastic model regarding of the basic reproduction number [Formula: see text]. If [Formula: see text], the solution of the model is oscillating around a steady state, which is the disease-free equilibrium of the corresponding deterministic model. If [Formula: see text], there is a stationary distribution and the solution has the ergodic property, which means that the disease will prevail.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Guihua Li ◽  
Yuanhang Liu

In this study, we build a stochastic SIR epidemic model with vertical infection and nonlinear incidence. The influence of the fluctuation of disease transmission parameters and state variables on the dynamic behaviors of the system is the focus of our study. Through the theoretical analysis, we obtain that there exists a unique global positive solution for any positive initial value. A threshold R 0 s is given. When R 0 s < 1 , the diseases can be extincted with probability one. When R 0 s > 1 , we construct a stochastic Lyapunov function to prove that the system exists an ergodic stationary distribution, which means that the disease will persist. Then, we obtain the conditions that the solution of the stochastic model fluctuates widely near the equilibria of the corresponding deterministic model. Finally, the correctness of the results is verified by numerical simulation. It is further found that the fluctuation of disease transmission parameters and infected individuals with the environment can reduce the threshold of disease outbreak, while the fluctuation of susceptible and recovered individuals has a little effect on the dynamic behavior of the system. Therefore, we can make the disease extinct by adjusting the appropriate random disturbance.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


2018 ◽  
Vol 49 (2) ◽  
pp. 155-182 ◽  
Author(s):  
Pitchaimani M. ◽  
Rajasekar S.P.

In this article, a stochastic SIR epidemic model with treatment rate in a population of varying size is proposed and investigated. For the stochastic version, we briefly discuss the existence of global unique solutions and using the Lyapunov function, the disease free equilibrium solution is globally asymptotic stabe if $\mathcal{R}_0\leq1$ and the endemic equilibrium solution is obtained when $\mathcal{R}_0>1$. The main attention is paid to the $p$th-moment exponentially stable on the system, proved under suitable assumptions on the white noise perturbations and the optimal control for the deterministic model. Finally numerical simulations are done to show our theoretical results and to demonstrate the complicated dynamics of the model.


Sign in / Sign up

Export Citation Format

Share Document