Reducing phosphorus flux from organic soils in surface flow treatment wetlands

Chemosphere ◽  
2011 ◽  
Vol 85 (4) ◽  
pp. 625-629 ◽  
Author(s):  
Susan M. Lindstrom ◽  
John R. White
1997 ◽  
Vol 35 (5) ◽  
pp. 11-17 ◽  
Author(s):  
Hans Brix

The larger aquatic plants growing in wetlands are usually called macrophytes. These include aquatic vascular plants, aquatic mosses and some larger algae. The presence or absence of aquatic macrophytes is one of the characteristics used to define wetlands, and as such macrophytes are an indispensable component of these ecosystems. As the most important removal processes in constructed treatment wetlands are based on physical and microbial processes, the role of the macrophytes in these has been questioned. This paper summarizes how macrophytes influence the treatment processes in wetlands. The most important functions of the macrophytes in relation to the treatment of wastewater are the physical effects the presence of the plants gives rise to. The macrophytes stabilise the surface of the beds, provide good conditions for physical filtration, prevent vertical flow systems from clogging, insulate the surface against frost during winter, and provide a huge surface area for attached microbial growth. Contrary to earlier belief, the growth of macrophytes does not increase the hydraulic conductivity of the substrate in soil-based subsurface flow constructed wetlands. The metabolism of the macrophytes affects the treatment processes to different extents depending on the type of the constructed wetland. Plant uptake of nutrients is only of quantitative importance in low-loaded systems (surface flow systems). Macrophyte mediated transfer of oxygen to the rhizosphere by leakage from roots increases aerobic degradation of organic matter and nitrification. The macrophytes have additional site-specific values by providing habitat for wildlife and making wastewater treatment systems aesthetically pleasing.


2018 ◽  
Vol 642 ◽  
pp. 208-215 ◽  
Author(s):  
R. Lombard-Latune ◽  
L. Pelus ◽  
N. Fina ◽  
F. L'Etang ◽  
B. Le Guennec ◽  
...  

2020 ◽  
Vol 713 ◽  
pp. 136510 ◽  
Author(s):  
German Dario Martinez-Carvajal ◽  
Laurent Oxarango ◽  
Rémi Clément ◽  
Pascal Molle ◽  
Nicolas Forquet

2001 ◽  
Vol 44 (11-12) ◽  
pp. 345-352 ◽  
Author(s):  
R. Axler ◽  
J. Henneck ◽  
B. McCarthy

Approximately 30% of Minnesotans use on-site systems (~500,000 residences) and >50% are failing or non-compliant with regulations due to restrictive soils and site conditions. Many sites occur near lakes and streams creating health hazards and deteriorating water quality. SSF CWs have been evaluated year-round at two northern sites since 1995. The NERCC CWs simulate single homes and the Grand Lake demonstration CW treats STE from a cluster of 9 lakeshore homes. Systems were generally able to achieve design criteria of 25 mgTSS/L and 30 mgBOD5/L and the NERCC CWs required only 0.3m of unsaturated soil to achieve consistent disinfection to <200 fecals/100 mL year round. Seeding experiments with Salmonella indicated removal efficiencies of 99.8% in summer and 95% in winter. High strength (∼300 mgBOD/L, 95 mgTN/L) influent at NERCC probably limited system performance, particularly N-removal (mass) which was ∼42% in summer and 20% in winter. The data indicate CW's are a viable, year-round treatment option for homeowners in terms of performance, ease of operation, and cost but require additional maintenance related to inconsistent vegetation growth, winter insulation, and meeting concentration-based regulatory standards since they were seasonally and annually variable due to rain events, partial freezing, spring snowmelt, and summer evapotranspiration.


2020 ◽  
Vol 742 ◽  
pp. 140608
Author(s):  
Camila Maria Trein ◽  
Camille Banc ◽  
Kevin Maciejewski ◽  
Amanda de Moraes Motta ◽  
Rémy Gourdon ◽  
...  

2000 ◽  
Vol 2000 (1) ◽  
pp. 412-420 ◽  
Author(s):  
Robert W. Nairn ◽  
Matthew N. Mercer ◽  
Stephanie A. Lipe

2013 ◽  
Vol 68 (2) ◽  
pp. 486-493 ◽  
Author(s):  
Ewa Wojciechowska ◽  
Magdalena Gajewska

The retention of heavy metals at two pilot-scale treatment wetlands (TWs), consisting of two vertical flow beds (VSSF) followed by a horizontal flow bed (HSSF) was studied. The TWs received high-strength wastewater: reject waters from sewage sludge centrifugation (RW) and landfill leachate (LL). The concentrations of the metals Fe, Mn, Zn, Al, Pb, Cu, Cd, Co, and Ni were measured in treated wastewater, substrate of the beds and in plant material harvested from the beds (separately in above ground (ABG) parts and below ground (BG) parts). The TWs differed in metals retention. In the RW treating TW the metal removal efficiencies varied from 27% for Pb to over 97% for Fe and Al. In the LL treating system the concentrations of most metals decreased after VSSF-1 and VSSF-2 beds; however, in the outflow from the last (HSSF) bed, the concentrations of metals (apart from Al) increased again, probably due to the anaerobic conditions at the bed. A major removal pathway was sedimentation and adsorption onto soil substrate as well as precipitation and co-precipitation. In the LL treating facility the plants contained substantially higher metal concentrations in BG parts, while the upward movement of metals was restricted. In the RW treating facility the BG/ABG ratios were lower, indicating that metals were transported to shoots.


2004 ◽  
Vol 38 (3) ◽  
pp. 892-898 ◽  
Author(s):  
Margaret G. Forbes ◽  
Kenneth R. Dickson ◽  
Teresa D. Golden ◽  
Paul Hudak ◽  
Robert D. Doyle

Sign in / Sign up

Export Citation Format

Share Document