Evaluation of the joint effects of Cu2+, Zn2+ and Mn2+ on completely autotrophic nitrogen-removal over nitrite (CANON) process

Chemosphere ◽  
2021 ◽  
pp. 131896
Author(s):  
Liru Fan ◽  
Huayu Li ◽  
Yao Chen ◽  
Fangxu Jia ◽  
Tao Liu ◽  
...  
2012 ◽  
Vol 118 ◽  
pp. 399-406 ◽  
Author(s):  
Tao Liu ◽  
Dong Li ◽  
Huiping Zeng ◽  
Xiangkun Li ◽  
Taotao Zeng ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoling Zhang ◽  
Fan Zhang ◽  
Yanhong Zhao ◽  
Zhengqun Li

The start-up and performance of the completely autotrophic nitrogen removal via nitrite (CANON) process were examined in a sequencing batch reactor (SBR) with intermittent aeration. Initially, partial nitrification was established, and then the DO concentration was lowered further, surplus water in the SBR with high nitrite was replaced with tap water, and continuous aeration mode was turned into intermittent aeration mode, while the removal of total nitrogen was still weak. However, the total nitrogen (TN) removal efficiency and nitrogen removal loading reached 83.07% and 0.422 kgN/(m3·d), respectively, 14 days after inoculating 0.15 g of CANON biofilm biomass into the SBR. The aggregates formed in SBR were the mixture of activated sludge and granular sludge; the volume ratio of floc and granular sludge was 7 : 3. DNA analysis showed that Planctomycetes-like anammox bacteria and Nitrosomonas-like aerobic ammonium oxidization bacteria were dominant bacteria in the reactor. The influence of aeration strategies on CANON process was investigated using batch tests. The result showed that the strategy of alternating aeration (1 h) and nonaeration (1 h) was optimum, which can obtain almost the same TN removal efficiency as continuous aeration while reducing the energy consumption, inhibiting the activity of NOB, and enhancing the activity of AAOB.


2012 ◽  
Vol 167 (4) ◽  
pp. 694-704 ◽  
Author(s):  
Shan Li ◽  
You-Peng Chen ◽  
Chun Li ◽  
Jin-Song Guo ◽  
Fang Fang ◽  
...  

2020 ◽  
Vol 81 (5) ◽  
pp. 1071-1079
Author(s):  
Caimeng Wang ◽  
Lirong Lei ◽  
Fangrui Cai ◽  
Youming Li

Abstract In this study, the completely autotrophic nitrogen removal over nitrite (CANON) process was initiated in a sequencing batch biofilm reactor (SBBR). Then the reactor was operated under different IC/N ratios. The total inorganic nitrogen removal efficiency (TINRE) at IC/N ratios of 0.75, 1.0, 1.25, 1.5 and 2.0 were 37.0 ± 11.0%, 58.9 ± 10.2%, 73.9 ± 3.2%, 73.6 ± 1.8% and 72.6 ± 2.0%, respectively. The suitable range of IC/N ratio in this research is 1.25–2.0. The poor nitrogen removal performance at IC/N ratio of 0.75 was due to the lack of growth substrate for AnAOB and low pH simultaneously; at IC/N ratio of 1.0 this was because the substrate concentration was insufficient for fully recovering the AnAOB activities. Microbial analysis indicated that Nitrosomonas, Nitrospira and Candidatus Brocadia were the main ammonium oxidation bacteria (AOB), nitrite oxidation bacteria (NOB) and anammox bacteria (AnAOB), respectively. In addition, at IC ratios of 1.25 or higher, denitrification was promoted with the rise of IC/N ratio, which might be because the change of IC concentrations caused cell lysis of microorganisms and provided organic matter for denitrification.


Sign in / Sign up

Export Citation Format

Share Document