Insights into the hydrated electron generation from UV/aniline: Mechanism and quantum efficiency

Chemosphere ◽  
2021 ◽  
pp. 132292
Author(s):  
Xiaoping Yu ◽  
Ling Tan ◽  
Yalin Yu ◽  
Yun Xia ◽  
Zhen Guan ◽  
...  
2019 ◽  
Vol 10 (8) ◽  
pp. 1743-1749 ◽  
Author(s):  
Mariia V. Pavliuk ◽  
Sol Gutiérrez Álvarez ◽  
Yocefu Hattori ◽  
Maria E. Messing ◽  
Joanna Czapla-Masztafiak ◽  
...  

2021 ◽  
Vol 0 (4) ◽  
pp. 22-29
Author(s):  
G.L. SHARIPOV ◽  
◽  
B.M. GAREEV ◽  
A.M. ABDRAKHMANOV ◽  
L.R. YAKSHEMBETOVA ◽  
...  

Discovered the activation of moving single-bubble sonoluminescence and radioluminescence for Gd3+ and Dy3+ ions in aqueous solutions of GdCl3 and DyCl3 by the acceptor of a hydrated electron (eaq-): H+, Cd2+, etc. This activation is similar to the previously found activation by acceptors of eaq- radioluminescence and single-bubble sonoluminescence for the Tb3+ ion. Electron acceptors do not affect the quantum yield of the said lantha-nide ions photoluminescence. They also do not affect the yield of their multibubble sonoluminescence in aqueous solutions, since eaqdoes not appear in significant amounts during multibubble sonolysis. The found luminescence activation effects of lanthanide ions are interpreted as a consequence of the suppression of the quenching (reduction) reactions of these electronically excited ions eaq: *Ln3+ + eaq- → Ln2+ by acceptors. The feasibility of these reactions was predicted for all Ln3+ ions based on a theoretical estimate of their free energy. The discovery of the described effects of activation of the luminescence of Ln3+ ions is a consequence and serves as confirmation of not only the known generation of eaq- during radiolysis, but also its previously unknown generation during moving single-bubble sonolysis of water.


2005 ◽  
Vol 125 ◽  
pp. 193-196 ◽  
Author(s):  
S. L. Oliveira ◽  
S. M. Lima ◽  
T. Catunda ◽  
H. Vargas ◽  
L. A.O. Nunes ◽  
...  

2003 ◽  
Vol 762 ◽  
Author(s):  
Jianhua Zhu ◽  
Vikram L. Dalal

AbstractWe report on the growth and properties of microcrystalline Si:H and (Si,Ge):H solar cells on stainless steel substrates. The solar cells were grown using a remote, low pressure ECR plasma system. In order to crystallize (Si,Ge), much higher hydrogen dilution (∼40:1) had to be used compared to the case for mc-Si:H, where a dilution of 10:1 was adequate for crystallization. The solar cell structure was of the p+nn+ type, with light entering the p+ layer. It was found that it was advantageous to use a thin a-Si:H buffer layer at the back of the cells in order to reduce shunt density and improve the performance of the cells. A graded gap buffer layer was used at the p+n interface so as to improve the open-circuit voltage and fill factor. The open circuit voltage and fill factor decreased as the Ge content increased. Quantum efficiency measurements indicated that the device was indeed microcrystalline and followed the absorption characteristics of crystalline ( Si,Ge). As the Ge content increased, quantum efficiency in the infrared increased. X-ray measurements of films indicated grain sizes of ∼ 10nm. EDAX measurements were used to measure the Ge content in the films and devices. Capacitance measurements at low frequencies ( ~100 Hz and 1 kHz) indicated that the base layer was indeed behaving as a crystalline material, with classical C(V) curves. The defect density varied between 1x1016 to 2x1017/cm3, with higher defects indicated as the Ge concentration increased.


2020 ◽  
Vol 14 (1) ◽  
pp. 011004
Author(s):  
Shubhra S. Pasayat ◽  
Chirag Gupta ◽  
Matthew S. Wong ◽  
Ryan Ley ◽  
Michael J. Gordon ◽  
...  

Author(s):  
A. V. Ermachikhin ◽  
◽  
Yu. V. Vorobyov ◽  
V. O. Sazonov ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document