Theoretical design of phosphorescence parameters for organic electro-luminescence devices based on iridium complexes

2009 ◽  
Vol 358 (3) ◽  
pp. 245-257 ◽  
Author(s):  
Boris Minaev ◽  
Hans Ågren ◽  
Filippo De Angelis
2020 ◽  
Author(s):  
Boris Sheludko ◽  
Cristina Castro ◽  
Chaitanya Khalap ◽  
Thomas Emge ◽  
Alan Goldman ◽  
...  

<b>Abstract:</b> The production of olefins via on-purpose dehydrogenation of alkanes allows for a more efficient, selective and lower cost alternative to processes such as steam cracking. Silica-supported pincer-iridium complexes of the form [(≡SiO-<sup>R4</sup>POCOP)Ir(CO)] (<sup>R4</sup>POCOP = κ<sup>3</sup>-C<sub>6</sub>H<sub>3</sub>-2,6-(OPR<sub>2</sub>)<sub>2</sub>) are effective for acceptorless alkane dehydrogenation, and have been shown stable up to 300 °C. However, while solution-phase analogues of such species have demonstrated high regioselectivity for terminal olefin production under transfer dehydrogenation conditions at or below 240 °C, in open systems at 300 °C, regioselectivity under acceptorless dehydrogenation conditions is consistently low. In this work, complexes <a>[(≡SiO-<i><sup>t</sup></i><sup>Bu4</sup>POCOP)Ir(CO)] </a>(<b>1</b>) and [(≡SiO-<i><sup>i</sup></i><sup>Pr4</sup>PCP)Ir(CO)] (<b>2</b>) were synthesized via immobilization of molecular precursors. These complexes were used for gas-phase butane transfer dehydrogenation using increasingly sterically demanding olefins, resulting in observed selectivities of up to 77%. The results indicate that the active site is conserved upon immobilization.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yuxue Wei ◽  
Honglin Qin ◽  
Jinxin Deng ◽  
Xiaomeng Cheng ◽  
Mengdie Cai ◽  
...  

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation. Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.


2006 ◽  
Vol 71 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Martin Pošta ◽  
Jan Čermák ◽  
Pavel Vojtíšek ◽  
Ivana Císařová

The first rhodium complexes of diphosphinoazines [{RhCl(1,2-η:5,6-η-CH=CHCH2CH2CH=CHCH2CH2)}2 {μ-R2PCH2C(But)=NN=C(But)CH2PR2] (R = Ph, Cy, Pri) were prepared by cleavage of the bridge in chloro(cycloocta-1,5-diene)rhodium(I) dimer, the analogous iridium(I) complexes were also prepared for the first time. The X-ray structures of isostructural rhodium and iridium complexes with bis(dicyclohexylphosphino)pinacoloneazine were determined. Diphosphinoazine ligands in the complexes remained in (Z,Z) configuration bridging two RhCl(C8H12) units.


RSC Advances ◽  
2021 ◽  
Vol 11 (18) ◽  
pp. 11004-11010
Author(s):  
Zequn Ma ◽  
Chaojun Jing ◽  
Deyu Hang ◽  
Hongtao Fan ◽  
Lumeng Duan ◽  
...  

Three high-efficient green light iridium complexes were designed and prepared. Thermal stabilities, electrochemical properties, electroluminescence performances and substituents effects are presented and discussed in this study.


2021 ◽  
Vol 937 ◽  
pp. 121731
Author(s):  
Lathewdeipor Shadap ◽  
Nipanshu Agarwal ◽  
Vivek Chetry ◽  
Krishna Mohan Poluri ◽  
Werner Kaminsky ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15323-15331
Author(s):  
Yao Xu ◽  
Xiang Wang ◽  
Kang Song ◽  
Jun Du ◽  
Jinliang Liu ◽  
...  

Three new iridium complexes were synthesized and fabricated with BSA to form nano-photosensitizers, which can catalyze oxygen to produce singlet oxygen to achieve photodynamic therapy of tumor cells.


Sign in / Sign up

Export Citation Format

Share Document