scholarly journals Cellular DDX21 RNA Helicase Inhibits Influenza A Virus Replication but Is Counteracted by the Viral NS1 Protein

2014 ◽  
Vol 15 (4) ◽  
pp. 484-493 ◽  
Author(s):  
Guifang Chen ◽  
Chien-Hung Liu ◽  
Ligang Zhou ◽  
Robert M. Krug
2018 ◽  
Vol 9 ◽  
Author(s):  
Shiho Chiba ◽  
Lindsay Hill-Batorski ◽  
Gabriele Neumann ◽  
Yoshihiro Kawaoka

2007 ◽  
Vol 81 (7) ◽  
pp. 3058-3067 ◽  
Author(s):  
Christina Ehrhardt ◽  
Thorsten Wolff ◽  
Stephan Pleschka ◽  
Oliver Planz ◽  
Wiebke Beermann ◽  
...  

ABSTRACT Recently we have shown that influenza A virus infection leads to activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and that this cellular reaction is dependent on the expression of the viral nonstructural protein 1 (NS1). These data also suggested that PI3K activation confers a virus-supporting activity at intermediate stages of the infection cycle. So far it is not known which process is regulated by the kinase that supports virus replication. It is well established that upon infection with influenza A virus, the expression of the viral NS1 keeps the induction of beta interferon and the apoptotic response within a tolerable limit. On a molecular basis, this activity of NS1 has been suggested to preclude the activation of cellular double-stranded RNA receptors as well as impaired modulation of mRNA processing. Here we present a novel mode of action of the NS1 protein to suppress apoptosis induction. NS1 binds to and activates PI3K, which results in the activation of the PI3K effector Akt. This leads to a subsequent inhibition of caspase 9 and glycogen synthase-kinase 3β and limitation of the virus-induced cell death program. Thus, NS1 not only blocks but also activates signaling pathways to ensure efficient virus replication.


2004 ◽  
Vol 85 (4) ◽  
pp. 983-991 ◽  
Author(s):  
Etienne Bucher ◽  
Hans Hemmes ◽  
Peter de Haan ◽  
Rob Goldbach ◽  
Marcel Prins

RNA silencing comprises a set of sequence-specific RNA degradation pathways that occur in a wide range of eukaryotes, including animals, fungi and plants. A hallmark of RNA silencing is the presence of small interfering RNA molecules (siRNAs). The siRNAs are generated by cleavage of larger double-stranded RNAs (dsRNAs) and provide the sequence specificity for degradation of cognate RNA molecules. In plants, RNA silencing plays a key role in developmental processes and in control of virus replication. It has been shown that many plant viruses encode proteins, denoted RNA silencing suppressors, that interfere with this antiviral response. Although RNA silencing has been shown to occur in vertebrates, no relationship with inhibition of virus replication has been demonstrated to date. Here we show that the NS1 protein of human influenza A virus has an RNA silencing suppression activity in plants, similar to established RNA silencing suppressor proteins of plant viruses. In addition, NS1 was shown to be capable of binding siRNAs. The data presented here fit with a potential role for NS1 in counteracting innate antiviral responses in vertebrates by sequestering siRNAs.


2014 ◽  
Vol 89 (5) ◽  
pp. 2764-2776 ◽  
Author(s):  
Daphne A. Cooper ◽  
Shuvojit Banerjee ◽  
Arindam Chakrabarti ◽  
Adolfo García-Sastre ◽  
Jay R. Hesselberth ◽  
...  

ABSTRACTInfluenza A virus (IAV) infections are influenced by type 1 interferon-mediated antiviral defenses and by viral countermeasures to these defenses. When IAV NS1 protein is disabled, RNase L restricts virus replication; however, the RNAs targeted for cleavage by RNase L under these conditions have not been defined. In this study, we used deep-sequencing methods to identify RNase L cleavage sites within host and viral RNAs from IAV PR8ΔNS1-infected A549 cells. Short hairpin RNA knockdown of RNase L allowed us to distinguish between RNase L-dependent and RNase L-independent cleavage sites. RNase L-dependent cleavage sites were evident at discrete locations in IAV RNA segments (both positive and negative strands). Cleavage in PB2, PB1, and PA genomic RNAs suggests that viral RNPs are susceptible to cleavage by RNase L. Prominent amounts of cleavage mapped to specific regions within IAV RNAs, including some areas of increased synonymous-site conservation. Among cellular RNAs, RNase L-dependent cleavage was most frequent at precise locations in rRNAs. Our data show that RNase L targets specific sites in both host and viral RNAs to restrict influenza virus replication when NS1 protein is disabled.IMPORTANCERNase L is a critical component of interferon-regulated and double-stranded-RNA-activated antiviral host responses. We sought to determine how RNase L exerts its antiviral activity during influenza virus infection. We enhanced the antiviral activity of RNase L by disabling a viral protein, NS1, that inhibits the activation of RNase L. Then, using deep-sequencing methods, we identified the host and viral RNAs targeted by RNase L. We found that RNase L cleaved viral RNAs and rRNAs at very precise locations. The direct cleavage of IAV RNAs by RNase L highlights an intimate battle between viral RNAs and an antiviral endonuclease.


2008 ◽  
Vol 13 (7) ◽  
pp. 581-590 ◽  
Author(s):  
Marta Maroto ◽  
Yolanda Fernandez ◽  
Juan Ortin ◽  
Fernando Pelaez ◽  
M. Angerles Cabello

The NS1 protein is a nonstructural protein encoded by the influenza A virus. It is responsible for many alterations produced in the cellular metabolism upon infection by the virus and for modulation of virus virulence. The NS1 protein is able to perform a large variety of functions due to its ability to bind various types of RNA molecules, from both viral and nonviral origin, and to interact with several cell factors. With the aim of exploring whether the binding of NS1 protein to viral RNA (vRNA) could constitute a novel target for the search of anti-influenza drugs, a filter-binding assay measuring the specific interaction between the recombinant His-NS1 protein from influenza A virus and a radiolabeled model vRNA ( 32P-vNSZ) was adapted to a format suitable for screening and easy automation. Flashplate® technology (PerkinElmer, Waltham, MA), either in 96- or 384-well plates, was used. The Flashplate® wells were precoated with the recombinant His-NS1 protein, and the binding of His-NS1 to a 35S-vNSZ probe was measured. A pilot screening of a collection of 27,520 mixtures of synthetic chemical compounds was run for inhibitors of NS1 binding to vRNA. We found 3 compounds in which the inhibition of NS1 binding to vRNA, observed at submicromolar concentrations, was correlated with a reduction of the cytopathic effect during the infection of cell cultures with influenza virus. These results support the hypothesis that the binding of NS1 to vRNA could be a novel target for the development of anti-influenza drugs. ( Journal of Biomolecular Screening 2008:581-590)


Sign in / Sign up

Export Citation Format

Share Document