scholarly journals Human DDX56 protein interacts with influenza A virus NS1 protein and stimulates the virus replication

2021 ◽  
Vol 44 (1) ◽  
Author(s):  
Ayşegül Pirinçal ◽  
Kadir Turan
2014 ◽  
Vol 15 (4) ◽  
pp. 484-493 ◽  
Author(s):  
Guifang Chen ◽  
Chien-Hung Liu ◽  
Ligang Zhou ◽  
Robert M. Krug

2007 ◽  
Vol 81 (7) ◽  
pp. 3058-3067 ◽  
Author(s):  
Christina Ehrhardt ◽  
Thorsten Wolff ◽  
Stephan Pleschka ◽  
Oliver Planz ◽  
Wiebke Beermann ◽  
...  

ABSTRACT Recently we have shown that influenza A virus infection leads to activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and that this cellular reaction is dependent on the expression of the viral nonstructural protein 1 (NS1). These data also suggested that PI3K activation confers a virus-supporting activity at intermediate stages of the infection cycle. So far it is not known which process is regulated by the kinase that supports virus replication. It is well established that upon infection with influenza A virus, the expression of the viral NS1 keeps the induction of beta interferon and the apoptotic response within a tolerable limit. On a molecular basis, this activity of NS1 has been suggested to preclude the activation of cellular double-stranded RNA receptors as well as impaired modulation of mRNA processing. Here we present a novel mode of action of the NS1 protein to suppress apoptosis induction. NS1 binds to and activates PI3K, which results in the activation of the PI3K effector Akt. This leads to a subsequent inhibition of caspase 9 and glycogen synthase-kinase 3β and limitation of the virus-induced cell death program. Thus, NS1 not only blocks but also activates signaling pathways to ensure efficient virus replication.


2004 ◽  
Vol 85 (4) ◽  
pp. 983-991 ◽  
Author(s):  
Etienne Bucher ◽  
Hans Hemmes ◽  
Peter de Haan ◽  
Rob Goldbach ◽  
Marcel Prins

RNA silencing comprises a set of sequence-specific RNA degradation pathways that occur in a wide range of eukaryotes, including animals, fungi and plants. A hallmark of RNA silencing is the presence of small interfering RNA molecules (siRNAs). The siRNAs are generated by cleavage of larger double-stranded RNAs (dsRNAs) and provide the sequence specificity for degradation of cognate RNA molecules. In plants, RNA silencing plays a key role in developmental processes and in control of virus replication. It has been shown that many plant viruses encode proteins, denoted RNA silencing suppressors, that interfere with this antiviral response. Although RNA silencing has been shown to occur in vertebrates, no relationship with inhibition of virus replication has been demonstrated to date. Here we show that the NS1 protein of human influenza A virus has an RNA silencing suppression activity in plants, similar to established RNA silencing suppressor proteins of plant viruses. In addition, NS1 was shown to be capable of binding siRNAs. The data presented here fit with a potential role for NS1 in counteracting innate antiviral responses in vertebrates by sequestering siRNAs.


2014 ◽  
Vol 89 (5) ◽  
pp. 2764-2776 ◽  
Author(s):  
Daphne A. Cooper ◽  
Shuvojit Banerjee ◽  
Arindam Chakrabarti ◽  
Adolfo García-Sastre ◽  
Jay R. Hesselberth ◽  
...  

ABSTRACTInfluenza A virus (IAV) infections are influenced by type 1 interferon-mediated antiviral defenses and by viral countermeasures to these defenses. When IAV NS1 protein is disabled, RNase L restricts virus replication; however, the RNAs targeted for cleavage by RNase L under these conditions have not been defined. In this study, we used deep-sequencing methods to identify RNase L cleavage sites within host and viral RNAs from IAV PR8ΔNS1-infected A549 cells. Short hairpin RNA knockdown of RNase L allowed us to distinguish between RNase L-dependent and RNase L-independent cleavage sites. RNase L-dependent cleavage sites were evident at discrete locations in IAV RNA segments (both positive and negative strands). Cleavage in PB2, PB1, and PA genomic RNAs suggests that viral RNPs are susceptible to cleavage by RNase L. Prominent amounts of cleavage mapped to specific regions within IAV RNAs, including some areas of increased synonymous-site conservation. Among cellular RNAs, RNase L-dependent cleavage was most frequent at precise locations in rRNAs. Our data show that RNase L targets specific sites in both host and viral RNAs to restrict influenza virus replication when NS1 protein is disabled.IMPORTANCERNase L is a critical component of interferon-regulated and double-stranded-RNA-activated antiviral host responses. We sought to determine how RNase L exerts its antiviral activity during influenza virus infection. We enhanced the antiviral activity of RNase L by disabling a viral protein, NS1, that inhibits the activation of RNase L. Then, using deep-sequencing methods, we identified the host and viral RNAs targeted by RNase L. We found that RNase L cleaved viral RNAs and rRNAs at very precise locations. The direct cleavage of IAV RNAs by RNase L highlights an intimate battle between viral RNAs and an antiviral endonuclease.


2008 ◽  
Vol 13 (7) ◽  
pp. 581-590 ◽  
Author(s):  
Marta Maroto ◽  
Yolanda Fernandez ◽  
Juan Ortin ◽  
Fernando Pelaez ◽  
M. Angerles Cabello

The NS1 protein is a nonstructural protein encoded by the influenza A virus. It is responsible for many alterations produced in the cellular metabolism upon infection by the virus and for modulation of virus virulence. The NS1 protein is able to perform a large variety of functions due to its ability to bind various types of RNA molecules, from both viral and nonviral origin, and to interact with several cell factors. With the aim of exploring whether the binding of NS1 protein to viral RNA (vRNA) could constitute a novel target for the search of anti-influenza drugs, a filter-binding assay measuring the specific interaction between the recombinant His-NS1 protein from influenza A virus and a radiolabeled model vRNA ( 32P-vNSZ) was adapted to a format suitable for screening and easy automation. Flashplate® technology (PerkinElmer, Waltham, MA), either in 96- or 384-well plates, was used. The Flashplate® wells were precoated with the recombinant His-NS1 protein, and the binding of His-NS1 to a 35S-vNSZ probe was measured. A pilot screening of a collection of 27,520 mixtures of synthetic chemical compounds was run for inhibitors of NS1 binding to vRNA. We found 3 compounds in which the inhibition of NS1 binding to vRNA, observed at submicromolar concentrations, was correlated with a reduction of the cytopathic effect during the infection of cell cultures with influenza virus. These results support the hypothesis that the binding of NS1 to vRNA could be a novel target for the development of anti-influenza drugs. ( Journal of Biomolecular Screening 2008:581-590)


Viruses ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 101 ◽  
Author(s):  
Leena Ylösmäki ◽  
Riku Fagerlund ◽  
Inka Kuisma ◽  
Ilkka Julkunen ◽  
Kalle Saksela

2017 ◽  
Vol 92 (5) ◽  
Author(s):  
Hannah L. Turkington ◽  
Mindaugas Juozapaitis ◽  
Nikos Tsolakos ◽  
Eugenia Corrales-Aguilar ◽  
Martin Schwemmle ◽  
...  

ABSTRACT Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or pandemics. The recent discovery of influenza A-like viruses in bats has raised questions over whether these entities could be a threat to humans. Understanding unique properties of the newly described bat influenza A-like viruses, such as their mechanisms to infect cells or how they manipulate host functions, is critical to assess their likelihood of causing disease. Here, we characterized the bat influenza A-like virus NS1 protein, a key virulence factor, and found unexpected functional divergence of this protein from counterparts in other influenza A viruses. Our study dissects the molecular changes required by bat influenza A-like virus NS1 to adopt classical influenza A virus properties and suggests consequences of bat influenza A-like virus infection, potential future evolutionary trajectories, and intriguing virus-host biology in bat species.


Sign in / Sign up

Export Citation Format

Share Document