Cytosolic replication in epithelial cells fuels intestinal expansion and chronic fecal shedding of Salmonella Typhimurium

Author(s):  
Audrey Chong ◽  
Kendal G. Cooper ◽  
Laszlo Kari ◽  
Olof R. Nilsson ◽  
Chad Hillman ◽  
...  
1993 ◽  
Vol 123 (4) ◽  
pp. 895-907 ◽  
Author(s):  
B A McCormick ◽  
S P Colgan ◽  
C Delp-Archer ◽  
S I Miller ◽  
J L Madara

In human intestinal disease induced by Salmonella typhimurium, transepithelial migration of neutrophils (PMN) rapidly follows attachment of the bacteria to the epithelial apical membrane. In this report, we model those interactions in vitro, using polarized monolayers of the human intestinal epithelial cell, T84, isolated human PMN, and S. typhimurium. We show that Salmonella attachment to T84 cell apical membranes did not alter monolayer integrity as assessed by transepithelial resistance and measurements of ion transport. However, when human neutrophils were subsequently placed on the basolateral surface of monolayers apically colonized by Salmonella, physiologically directed transepithelial PMN migration ensued. In contrast, attachment of a non-pathogenic Escherichia coli strain to the apical membrane of epithelial cells at comparable densities failed to stimulate a directed PMN transepithelial migration. Use of the n-formyl-peptide receptor antagonist N-t-BOC-1-methionyl-1-leucyl-1- phenylalanine (tBOC-MLP) indicated that the Salmonella-induced PMN transepithelial migration response was not attributable to the classical pathway by which bacteria induce directed migration of PMN. Moreover, the PMN transmigration response required Salmonella adhesion to the epithelial apical membrane and subsequent reciprocal protein synthesis in both bacteria and epithelial cells. Among the events stimulated by this interaction was the epithelial synthesis and polarized release of the potent PMN chemotactic peptide interleukin-8 (IL-8). However, IL-8 neutralization, transfer, and induction experiments indicated that this cytokine was not responsible for the elicited PMN transmigration. These data indicate that a novel transcellular pathway exists in which subepithelial PMN respond to lumenal pathogens across a functionally intact epithelium. Based on the known unique characteristics of the intestinal mucosa, we speculate that IL-8 may act in concert with an as yet unidentified transcellular chemotactic factor(s) (TCF) which directs PMN migration across the intestinal epithelium.


1995 ◽  
Vol 9 (1) ◽  
pp. 31-36 ◽  
Author(s):  
B.B. Finlay

The interactions that occur between pathogenic micro-organisms and their host cells are complex and intimate. We have used two enteric pathogens, Salmonella typhimurium and enteropathogenic Escherichia coli (EPEC), to examine the interactions that occur between these organisms and epithelial cells. Although these are enteric pathogens, the knowledge and techniques developed from these systems may be applied to the study of dental pathogens. Both S. typhimurium and EPEC disrupt epithelial monolayer integrity, although by different mechanisms. Both pathogens cause loss of microvilli and re-arrangement of the underlying host cytoskeleton. Despite these similarities, both organisms send different signals into the host cell. EPEC signal transduction involves generation of intracellular calcium and inositol phosphate fluxes, and activation of host tyrosine kinases that results in tyrosine phosphorylation of a 90-kDa host protein. Bacterial mutants have been identifed that are deficient in signaling to the host. We propose a sequence of events that occur when EPEC interacts with epithelial cells. Once inside a host cell, S. typhimurium remains within a vacuole. To define some of the parameters of the intracellular environment, we constructed genetic fusions of known genes with lacZ, and used these fusions as reporter probes of the intracellular vacuolar environment. We have also begun to examine the bacterial and host cell factors necessary for S. typhimurium to multiply within epithelial cells. We found that this organism triggers the formation of novel tubular lysosomes, and these structures are linked with intracellular replication.


2020 ◽  
Vol 8 (12) ◽  
pp. 2019
Author(s):  
Fernando Díaz-Yáñez ◽  
Ricardo Álvarez ◽  
Iván L. Calderón ◽  
Juan A. Fuentes ◽  
Fernando Gil

Salmonella Typhimurium is a facultative, intracellular pathogen whose products range from self-limited gastroenteritis to systemic diseases. Food ingestion increases biomolecules’ concentration in the intestinal lumen, including amino acids such as cysteine, which is toxic in a concentration-dependent manner. When cysteine’s intracellular concentration reaches toxic levels, S. Typhimurium expresses a cysteine-inducible enzyme (CdsH), which converts cysteine into pyruvate, sulfide, and ammonia. Despite this evidence, the biological context of cdsH’s role is not completely clear, especially in the infective cycle. Since inside epithelial cells both cdsH and its positive regulator, ybaO, are overexpressed, we hypothesized a possible role of cdsH in the intestinal phase of the infection. To test this hypothesis, we used an in vitro model of HT-29 cell infection, adding extra cysteine to the culture medium during the infective process. We observed that, at 6 h post-invasion, the wild type S. Typhimurium proliferated 30% more than the ΔcdsH strain in the presence of extra cysteine. This result shows that cdsH contributes to the bacterial replication in the intracellular environment in increased concentrations of extracellular cysteine, strongly suggesting that cdsH participates by increasing the bacterial fitness in the intestinal phase of the S. Typhimurium infection.


2017 ◽  
Vol 95 (7) ◽  
pp. 2879-2890 ◽  
Author(s):  
P. J. van der Wolf ◽  
J. G. M. Wientjes ◽  
A. E. Heuvelink ◽  
A. M. B. Veldhuis ◽  
H. M. J. van Hees ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Alibek Galeev ◽  
Abdulhadi Suwandi ◽  
Hans Bakker ◽  
Ade Oktiviyari ◽  
Françoise H. Routier ◽  
...  

1995 ◽  
Vol 129 (1) ◽  
pp. 81-97 ◽  
Author(s):  
F Garcia-del Portillo ◽  
B B Finlay

Salmonella typhimurium is an intracellular bacterial pathogen that remains enclosed in vacuoles (SCV) upon entry into the host cell. In this study we have examined the intracellular trafficking route of S. typhimurium within epithelial cells. Indirect immunofluorescence analysis showed that bacteria initiated fusion with lysosomal membrane glycoprotein (lgp)-containing compartments approximately 15 min after bacterial internalization. This process was completed approximately 75 min later and did not require microtubules. Cation-independent (CI)- or cation-dependent (CD)-mannose 6-phosphate receptors (M6PRs) were not observed at detectable levels in SCV. Lysosomal enzymes showed a different distribution in SCV: lysosomal-acid phosphatase (LAP) was incorporated into these vacuoles with the same kinetics as lgps, while cathepsin D was present in a low proportion (approximately 30%) of SCV. Uptake experiments with fluid endocytic tracers such as fluorescein-dextran sulphate (F-DX) or horseradish-peroxidase (HRP) showed that after 2 h of uptake, F-DX was present in approximately 75% of lgp-containing vesicles in uninfected cells, while only approximately 15% of SCV contained small amounts of the tracer during the same uptake period. SCV also showed only partial fusion with HRP-preloaded secondary lysosomes, with approximately 30% of SCV having detectable amounts of HRP at 6 h after infection. These results indicate that SCV show limited accessibility to fluid endocytic tracers and mature lysosomes, and are therefore functionally separated from the endocytic route. Moreover, the unusual intracellular trafficking route of S. typhimurium inside epithelial cells has allowed us to establish the existence of two different lgp-containing vesicles in Salmonella-infected cells: one population is separated from the endocytic route, fusogenic with incoming SCV and may arise from a secretory pathway, while the second involves the classical secondary or mature lysosomes.


Sign in / Sign up

Export Citation Format

Share Document