A comparative study of exponential distribution vs Weibull distribution in machine reliability analysis in a CMS design

2008 ◽  
Vol 54 (1) ◽  
pp. 12-33 ◽  
Author(s):  
K. Das
2012 ◽  
Vol 452-453 ◽  
pp. 223-227
Author(s):  
Wen Hua Bai ◽  
Hong Fu Zuo ◽  
De Feng Lv

The MRBR is important to ensure the aircraft’s safety and reliability. The analysis to the structural components’ reliability is to establish the basis for its MRBR. The aviation component’s reliability obey the bathtub curve distribution, Weibull distribution, exponential distribution and a linear increasing distribution. A method of reliability analysis of structural components is proposed. According to the aircraft operating data the structural components reliability distribution is fitted. The component failure weaknesses and remedial measures can be determined according to its reliability distribution. So the perfect MRBR can be obtained. As an example the structural component slide rail is studied, which showed the slide rail reliability is the Weibull distribution and consistent with the actual running situation. So the example showed that the proposed method is reasonable. And a viable method to the development of aircraft MRBR is got.


2019 ◽  
Vol 16 (1) ◽  
pp. 33-57
Author(s):  
Sahar sadani ◽  
Kamel abdollahnezhad ◽  
mahdi teimouri ◽  
Vahid ranjbar ◽  
◽  
...  

2008 ◽  
Vol 39 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Limei Cao ◽  
Huafei Sun ◽  
Xiaojie Wang

Investigating the geometric structures of the distribution manifolds is a basic task in information geometry. However, by so far, most works are on the distribution manifolds of exponential family. In this paper, we investigate two non-exponential distribution manifolds —the Weibull distribution manifold and the generalized exponential distribution manifold. Then we obtain their geometric structures.


2017 ◽  
Vol 33 (8) ◽  
pp. 2521-2530 ◽  
Author(s):  
Luis Carlos Méndez-González ◽  
Luis Alberto Rodríguez-Picón ◽  
Delia Julieta Valles-Rosales ◽  
Roberto Romero-López ◽  
Abel Eduardo Quezada-Carreón

2018 ◽  
Vol 35 (9) ◽  
pp. 2080-2091 ◽  
Author(s):  
Mahesh Narayan Dhawalikar ◽  
V. Mariappan ◽  
P.K. Srividhya ◽  
Vishal Kurtikar

Purpose Degraded failures and sudden critical failures are quite prevalent in industries. Degradation processes commonly belong to Weibull family and critical failures are found to follow exponential distribution. Therefore, it becomes important to carry out reliability and availability analysis of such systems. From the reported literature, it is learnt that models are available for the situations where the degraded failures as well as critical failures follow exponential distribution. The purpose of this paper is to present models suitable for reliability and availability analysis of systems where the degradation process follows Weibull distribution and critical failures follow exponential distribution. Design/methodology/approach The research uses Semi-Markov modeling using the approach of method of stages which is suitable when the failure processes follow Weibull distribution. The paper considers various states of the system and uses state transition diagram to present the transition of the system among good state, degraded state and failed state. Method of stages is used to convert the semi-Markov model to Markov model. The number of stages calculated in Method of stages is usually not an integer value which needs to be round off. Method of stages thus suffers from the rounding off error. A unique approach is proposed to arrive at failure rates to reduce the error in method of stages. Periodic inspection and repairs of systems are commonly followed in industries to take care of system degradation. This paper presents models to carry out reliability and availability analysis of the systems including the case where degraded failures can be arrested by appropriate inspection and repair. Findings The proposed method for estimating the degraded failure rate can be used to reduce the error in method of stages. The models and the methodology are suitable for reliability and availability analysis of systems involving degradation which is very common in systems involving moving parts. These models are very suitable in accurately estimating the system reliability and availability which is very important in industry. The models conveniently cover the cases of degraded systems for which the model proposed by Hokstad and Frovig is not suitable. Research limitations/implications The models developed consider the systems where the repair phenomenon follows exponential and the failure mechanism follows Weibull with shape parameter greater than 1. Practical implications These models can be suitably used to deal with reliability and availability analysis of systems where the degradation process is non-exponential. Thus, the models can be practically used to meet the industrial requirement of accurately estimating the reliability and availability of degradable systems. Originality/value A unique approach is presented in this paper for estimating degraded failure rate in the method of stages which reduces the rounding error. The models presented for reliability and availability analyses can deal with degradable systems where the degradation process follows Weibull distribution, which is not possible with the model presented by Hokstad and Frovig.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 108629-108644 ◽  
Author(s):  
Sajid Ali ◽  
Shafaqat Ali ◽  
Ismail Shah ◽  
Ghazanfar Farooq Siddiqui ◽  
Tanzila Saba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document