Optimal Bayesian control policy for gear shaft fault detection using hidden semi-Markov model

2018 ◽  
Vol 119 ◽  
pp. 21-35 ◽  
Author(s):  
Xin Li ◽  
Viliam Makis ◽  
Hongfu Zuo ◽  
Jing Cai
2017 ◽  
Vol 2017 ◽  
pp. 1-16
Author(s):  
Xin Li ◽  
Jing Cai ◽  
Hongfu Zuo ◽  
Huaiyuan Li

Most of the existing fault detection methods rarely consider the cost-optimal maintenance policy. A novel multivariate Bayesian control approach is proposed, which enables the implementation of early fault detection for a helicopter gearbox with cost minimization maintenance policy under varying load. A continuous time hidden semi-Markov model (HSMM) is employed to describe the stochastic relationship between the unobservable states and observable observations of the gear system. Explicit expressions for the remaining useful life prediction are derived using HSMM. Considering the maintenance cost in fault detection, the multivariate Bayesian control scheme based on HSMM is developed; the objective is to minimize the long-run expected average cost per unit time. An effective computational algorithm in the semi-Markov decision process (SMDP) framework is designed to obtain the optimal control limit. A comparison with the multivariate Bayesian control chart based on hidden Markov model (HMM) and the traditional age-based replacement policy is given, which illustrates the effectiveness of the proposed approach.


2016 ◽  
Vol 23 (19) ◽  
pp. 3175-3195 ◽  
Author(s):  
Ayan Sadhu ◽  
Guru Prakash ◽  
Sriram Narasimhan

A robust hybrid hidden Markov model-based fault detection method is proposed to perform multi-state fault classification of rotating components. The approach presented in this paper enhances the performance of the standard hidden Markov model (HMM) for fault detection by performing a series of pre-processing steps. First, the de-noised time-scale signatures are extracted using wavelet packet decomposition of the vibration data. Subsequently, the Teager Kaiser energy operator is employed to demodulate the time-scale components of the raw vibration signatures, following which the condition indicators are calculated. Out of several possible condition indicators, only relevant features are selected using a decision tree. This pre-processing improves the sensitivity of condition indicators under multiple faults. A Gaussian mixing model-based hidden Markov model (HMM) is then employed for fault detection. The proposed hybrid HMM is an improvement over traditional HMM in that it achieves better separation of the feature space leading to more robust state estimation under multiple fault states and measurement noise scenarios. A simulation employing modulated signals and two experimental validation studies are presented to demonstrate the performance of the proposed method.


2012 ◽  
Vol 239-240 ◽  
pp. 721-725
Author(s):  
Wen Rong Zheng ◽  
Shu Zong Wang

Intermittent fault is the main factor for the raise of false alarm during the process of the detection in built-in test (BIT). Two-state Markov model and three-state Markov model for test is built for system fault diagnosis with BIT. According to the application of BIT in some complex system, a comparison of the false alarm rate between two-state Markov model and three-state Markov model is present, which shows we can reduce the false alarm rate (FAR) and improve fault detection rate by using three-state Markov model in BIT.


Sign in / Sign up

Export Citation Format

Share Document