An integrated approach to multiple criteria decision making based on the average solution and normalized weights of criteria deduced by the hesitant fuzzy best worst method

2019 ◽  
Vol 133 ◽  
pp. 83-94 ◽  
Author(s):  
Xiaomei Mi ◽  
Huchang Liao
2015 ◽  
Vol 14 (06) ◽  
pp. 1353-1400 ◽  
Author(s):  
Behnam Malakooti

Z Utility Theory refers to a class of nonlinear utility functions for solving Risk and Multiple Criteria Decision-Making problems. Z utility functions are hybrids of additive and nonadditive (nonlinear) functions. This paper addresses the concepts and assessment methods for the additive part of Z-utility functions for multiple criteria problems that satisfy the efficiency (nondominancy) principle. We provide a decision paradigm and guidelines on how to approach, formulate, and solve decision-making problems. We, also, overview the modeling of decision process based on four types of decision-making styles. For multi-criteria problems, a new definition of convex efficiency is introduced. Also polyhedral efficiency is developed for presenting multi-criteria efficiency (nondominancy) graphically. New double helix quasi-linear value functions for multi-criteria are developed. Two types of double helix value functions for solving bi-criteria (Advantages versus Disadvantages) and also risk problems are introduced: Food–Fun curves for expected values and Fight-Flight curves for expected risk values. Ordinal/Cardinal Approach (OCA) for assessment of additive utility functions is developed. Simple consistency tests to determine whether the assessed utility function satisfies ordinal and/or cardinal properties are provided. We show that OCA can also be used to solve outranking problems. We provide a critique of Analytic Hierarchy Process (AHP) for assessing additive value functions and show that the developed Ordinal/Cardinal Approach overcomes the shortcomings of AHP. We also develop a unified/integrated approach for simultaneous assessment of nonlinear value and additive (multi-criteria) utility functions. These results in an additive utility function that can be concave, convex, or hybrid concave/convex based on the nonlinear value function. Finally, we show an interactive paired comparisons approach for solving nonadditive and nonlinear utility functions for bi-criteria decision-making problems. Several illustrative examples are provided. The paper provides reliable and robust approaches for modeling the utility preferences of heterogeneous economic agents in macro and micro-economics.


Informatica ◽  
2020 ◽  
pp. 331-357 ◽  
Author(s):  
Amin Mahmoudi ◽  
Xiaomei Mi ◽  
Huchang Liao ◽  
Mohammad Reza Feylizadeh ◽  
Zenonas Turskis

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1554
Author(s):  
Dragiša Stanujkić ◽  
Darjan Karabašević ◽  
Gabrijela Popović ◽  
Predrag S. Stanimirović ◽  
Muzafer Saračević ◽  
...  

The environment in which the decision-making process takes place is often characterized by uncertainty and vagueness and, because of that, sometimes it is very hard to express the criteria weights with crisp numbers. Therefore, the application of the Grey System Theory, i.e., grey numbers, in this case, is very convenient when it comes to determination of the criteria weights with partially known information. Besides, the criteria weights have a significant role in the multiple criteria decision-making process. Many ordinary multiple criteria decision-making methods are adapted for using grey numbers, and this is the case in this article as well. A new grey extension of the certain multiple criteria decision-making methods for the determination of the criteria weights is proposed. Therefore, the article aims to propose a new extension of the Step-wise Weight Assessment Ratio Analysis (SWARA) and PIvot Pairwise Relative Criteria Importance Assessment (PIPRECIA) methods adapted for group decision-making. In the proposed approach, attitudes of decision-makers are transformed into grey group attitudes, which allows taking advantage of the benefit that grey numbers provide over crisp numbers. The main advantage of the proposed approach in relation to the use of crisp numbers is the ability to conduct different analyses, i.e., considering different scenarios, such as pessimistic, optimistic, and so on. By varying the value of the whitening coefficient, different weights of the criteria can be obtained, and it should be emphasized that this approach gives the same weights as in the case of crisp numbers when the whitening coefficient has a value of 0.5. In addition, in this approach, the grey number was formed based on the median value of collected responses because it better maintains the deviation from the normal distribution of the collected responses. The application of the proposed approach was considered through two numerical illustrations, based on which appropriate conclusions were drawn.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2084
Author(s):  
Raman Kumar ◽  
Rohit Dubey ◽  
Sehijpal Singh ◽  
Sunpreet Singh ◽  
Chander Prakash ◽  
...  

Total knee replacement (TKR) is a remarkable achievement in biomedical science that enhances human life. However, human beings still suffer from knee-joint-related problems such as aseptic loosening caused by excessive wear between articular surfaces, stress-shielding of the bone by prosthesis, and soft tissue development in the interface of bone and implant due to inappropriate selection of TKR material. The choice of most suitable materials for the femoral component of TKR is a critical decision; therefore, in this research paper, a hybrid multiple-criteria decision-making (MCDM) tactic is applied using the degree of membership (DoM) technique with a varied system, using the weighted sum method (WSM), the weighted product method (WPM), the weighted aggregated sum product assessment method (WASPAS), an evaluation based on distance from average solution (EDAS), and a technique for order of preference by similarity to ideal solution (TOPSIS). The weights of importance are assigned to different criteria by the equal weights method (EWM). Furthermore, sensitivity analysis is conducted to check the solidity of the projected tactic. The weights of importance are varied using the entropy weights technique (EWT) and the standard deviation method (SDM). The projected hybrid MCDM methodology is simple, reliable and valuable for a conflicting decision-making environment.


Sign in / Sign up

Export Citation Format

Share Document