010 A prospective randomised double centre dual platform coronary computed tomography angiography trial of the impact of padding on image quality, study interpretability and radiation dose

2011 ◽  
Vol 27 (5) ◽  
pp. S64-S65
Author(s):  
B.G. Heilbron ◽  
J.K. Min ◽  
T.M. LaBounty ◽  
G. Mancini ◽  
J.P. Earls ◽  
...  
2020 ◽  
pp. 1-10
Author(s):  
Yongxia Zhao ◽  
Dongxue Li ◽  
Zhichao Liu ◽  
Xue Geng ◽  
Tianle Zhang ◽  
...  

OBJECTIVE: To determine the optimal pre-adaptive and post-adaptive level statistical iterative reconstruction V (ASiR-V) for improving image quality and reducing radiation dose in coronary computed tomography angiography (CCTA). METHODS: The study was divided into two parts. In part I, 150 patients for CCTA were prospectively enrolled and randomly divided into 5 groups (A, B, C, D, and E) with progressive scanning from 40% to 80% pre-ASiR-V with 10% intervals and reconstructing with 70% post-ASiR-V. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Subjective image quality was assessed using a 5-point scale. The CT dose index volume (CTDIvol) and dose-length product (DLP) of each patient were recorded and the effective radiation dose (ED) was calculated after statistical analysis by optimizing for the best pre-ASiR-V value with the lowest radiation dose while maintaining overall image quality. In part II, the images were reconstructed with the recommended optimal pre-ASiR-V values in part I (D group) and 40%–90% of post-ASiR-V. The reconstruction group (D group) was divided into 6 subgroups (interval 10%, D0:40% post-ASiR-V, D1:50% post - ASiR-V, D2:60% post-ASiR-V, D3:70% post-ASiR-V, D4:80% post-ASiR-V, and D5:90% post-ASiR-V).The SNR and CNR of D0-D5 subgroups were calculated and analyzed using one-way analysis of variance, and the consistency of the subjective scores used the k test. RESULTS: There was no significant difference in the SNRs, CNRs, and image quality scores among A, B, C, and D groups (P > 0.05). The SNR, CNR, and image quality scores of the E group were lower than those of the A, B, C, and D groups (P < 0.05). The mean EDs in the B, C, and D groups were reduced by 7.01%, 13.37%, and 18.87%, respectively, when compared with that of the A group. The SNR and CNR of the D4–D5 subgroups were higher than the D0-D3 subgroups, and the image quality scores of the D4 subgroups were higher than the other subgroups (P < 0.05). CONCLUSION: The wide-detector combined with 70% pre-ASiR-V and 80% post-ASiR-V significantly reduces the radiation dose of CCTA while maintaining overall image quality as compared with the manufacture’s recommendation of 40% pre-ASiR-V.


2018 ◽  
Vol 8 ◽  
pp. 52
Author(s):  
Ernesto Di Cesare ◽  
Alessandra Di Sibio ◽  
Antonio Gennarelli ◽  
Margherita Di Luzio ◽  
Ines Casazza ◽  
...  

Purpose: The aim of this study was to compare image quality and mean radiation dose between two groups of patients undergoing coronary computed tomography angiography (CCTA) using a 640-slice CT scanner with two protocols with different noise level thresholds expressed as standard deviation (SD). Materials and Methods: Two-hundred and sixty-eight patients underwent a CCTA with 640 slice CT scanner. In the experimental group (135 patients), an SD 51 protocol was employed; in the control group (133 patients), an SD 33 protocol was used. Mean effective dose and image quality with both objective and subjective measures were assessed. Image quality was subjectively assessed using a five-point scoring system. Segments scoring 2, 3, and 4 were considered having diagnostic quality, while segments scoring 0 and 1 were considered having nondiagnostic quality. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) between the two groups as well as the effective radiation dose (ED) was finally assessed. Results: Comparative analysis considering diagnostic quality (2, 3, and 4 score) and nondiagnostic (score 0 and 1) quality demonstrated that image quality of SD 51 group is not significantly lower than that of S33 group. The noise was significantly higher in the SD 51 group than in the SD 33 group (P < 0.0001). The SNR and CNR were higher in the SD 33 group than in SD 51 group (P < 0.0001). Mean effective dose was 49% lower in the SD 51 group than in SD 33 group; indeed mean effective dose was 1.43 mSv ± 0.67 in the SD 51 group while it was 2.8 mSv ± 0.57 in the SD 33 group. Conclusion: Comparative analysis shows that using a 640-slice CT with a 51 SD protocol, it is possible to reduce the mean radiation dose while maintaining good diagnostic image quality.


Sign in / Sign up

Export Citation Format

Share Document