Prediction of curved oil–water interface in horizontal pipes using modified model with dynamic contact angle

2020 ◽  
Vol 28 (3) ◽  
pp. 698-711 ◽  
Author(s):  
Hongxin Zhang ◽  
Lusheng Zhai ◽  
Ruoyu Liu ◽  
Cong Yan ◽  
Ningde Jin
2021 ◽  
pp. 1-14
Author(s):  
Songyi Guo ◽  
Zhiming Wang ◽  
Quanshu Zeng

Abstract During the process of oil production and transportation, oil-water two-phase flow is a common occurrence. Well completion optimization and production design are greatly affected by the prediction accuracy of two-phase flow characteristics. In this paper, a novel model was proposed to predict the influence of interface shape on stratified flow. Dynamic contact angle theory and minimum energy method were introduced to solve the momentum equations with a curved interface and dispersed phase holdup in the lower water layer or the upper oil layer, respectively. If the interface shape changes from a flat surface to a curved surface, the flow area of the upper water layer will increase, and the flow area of the lower oil layer will decrease. Results showed that the dynamic contact angle and pressure gradient are greatly affected by oil superficial velocity, oil viscosity, and pipe diameter. By comparing the prediction with available experiment results, the validity of the model was evaluated. Results showed that the novel model had an overall good prediction performance for the dimensionless height of the oil-water interface at the mid-plane, the dimensionless height of water climbing, and the pressure gradient, with an average percentage error of 8.32%,16.09%, and 13.12%, respectively. The novel model is a unified model that could be used to solve the problem with a curved/flat interface. It will also promote the oil well production design and horizontal well completion optimization.


Author(s):  
O.N Goncharova ◽  
◽  
I.V. Marchuk ◽  
A.V. Zakurdaeva ◽  
◽  
...  

2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


2013 ◽  
Vol 333-335 ◽  
pp. 2004-2009
Author(s):  
Lin Ling Jiang ◽  
Wei Mo ◽  
Xiao Jing Yang ◽  
Tian Li Xue ◽  
Shao Jian Ma

To better understand the sedimentation processes of bentonite, the sedimentation characteristic of bentonite suspension was studied by using the sedimentation analysis module of Dynamic Contact Angle Meter and Tensiometer. The results indicated that sedimentation characteristics of bentonite suspension were affected by the concentration and pH values of the suspension together with the dosage of dispersants. The natural sedimentation rates of bentonite suspension declined firstly with prolonging the sedimentation time and soon stabilized after about 50s. The sedimentation weight of particles hardly changed when the concentration ranged from 0.5% to 5.0%, while it increased significantly when ranged from 5.0% to 10.0%. The sedimentation weight and rate were relatively bigger at 4.4, 11.8 than that of 6.0, 7.9, and the maximum values appeared at pH11.8. Adding sodium pyrophosphate could improve the dispersibility of bentonite suspension.


Polymer ◽  
1996 ◽  
Vol 37 (16) ◽  
pp. 3659-3664 ◽  
Author(s):  
T. Kasemura ◽  
S. Takahashi ◽  
N. Nakane ◽  
T. Maegawa

Sign in / Sign up

Export Citation Format

Share Document