Initial value-related dynamical analysis of the memristor-based system with reduced dimensions and its chaotic synchronization via adaptive sliding mode control method

2019 ◽  
Vol 58 ◽  
pp. 117-131 ◽  
Author(s):  
Fuhong Min ◽  
Chuang Li ◽  
Lei Zhang ◽  
Chunbiao Li
2020 ◽  
Vol 10 (14) ◽  
pp. 4779 ◽  
Author(s):  
Cheng Lu ◽  
Liang Hua ◽  
Xinsong Zhang ◽  
Huiming Wang ◽  
Yunxiang Guo

This paper investigates one kind of high performance control methods for Micro-Electro-Mechanical-System (MEMS) gyroscopes using adaptive sliding mode control (ASMC) scheme with prescribed performance. Prescribed performance control (PPC) method is combined with conventional ASMC method to provide quantitative analysis of gyroscope tracking error performances in terms of specified tracking error bound and specified error convergence rate. The new derived adaptive prescribed performance sliding mode control (APPSMC) can maintain a satisfactory control performance which guarantees system tracking error, at any time, to be within a predefined error bound and the error convergences faster than the error bound. Besides, adaptive control (AC) technique is integrated with PPC to online tune controller parameters, which will converge to their true values at last. The stability of the control system is proved in the Lyapunov stability framework and simulation results on a Z-axis MEMS gyroscope is conducted to validate the effectiveness of the proposed control approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Ehsan Maani Miandoab ◽  
Aghil Yousefi-Koma ◽  
Saeed Hashemnia

Two different control methods, namely, adaptive sliding mode control and impulse damper, are used to control the chaotic vibration of a block on a belt system due to the rate-dependent friction. In the first method, using the sliding mode control technique and based on the Lyapunov stability theory, a sliding surface is determined, and an adaptive control law is established which stabilizes the chaotic response of the system. In the second control method, the vibration of this system is controlled by an impulse damper. In this method, an impulsive force is applied to the system by expanding and contracting the PZT stack according to efficient control law. Numerical simulations demonstrate the effectiveness of both methods in controlling the chaotic vibration of the system. It is shown that the settling time of the controlled system using impulse damper is less than that one controlled by adaptive sliding mode control; however, it needs more control effort.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Guangshi Li

In this paper, an adaptive sliding mode control method based on neural networks is presented for a class of manipulator systems. The main characteristic of the discussed system is that the output variable is required to keep within a constraint set. In order to ensure that the system output meets the time-varying constraint condition, the asymmetric barrier Lyapunov function is selected in the design process. According to Lyapunov stability theory, the stability of the closed-loop system is analyzed. It is demonstrated that all signals in the resulted system are bounded, the tracking error converges to a small compact set, and the system output limits in its constrained set. Finally, the simulation example is used to show the effectiveness of the presented control strategy.


2019 ◽  
Vol 16 (5) ◽  
pp. 172988141988152
Author(s):  
Bai Rui

Recent years, electronically controlled air suspension has been widely used in vehicles to improve the riding comfort and the road holding ability. This article presents a new nonlinear adaptive sliding-mode control method for electronically controlled air suspension. A nonlinear dynamical model of electronically controlled air suspension is established, where the nonlinear dynamical characteristic of the air spring is considered. Based on the proposed nonlinear dynamic model, an adaptive sliding-mode control method is presented to stabilize the displacement of electronically controlled air suspension in the presence of parameter uncertainties. Parameter adaptive laws are designed to estimate the unknown parameters in electronically controlled air suspension. Stability analysis of the proposed nonlinear adaptive sliding-mode control method is given using Lyapunov stability theory. At last, the reliability of the proposed control method is evaluated by the computer simulation. Simulation research shows that the proposed control method can obtain the satisfactory control performance for electronically controlled air suspension.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gangfeng Yan

Purpose The purpose of this paper is to achieve high-precision sliding mode control without chattering; the control parameters are easy to adjust, and the entire controller is easy to use in engineering practice. Design/methodology/approach Using double sliding mode surfaces, the gain of the control signal can be adjusted adaptively according to the error signal. A kind of sliding mode controller without chattering is designed and applied to the control of ultrasonic motors. Findings The results show that for a position signal with a tracking amplitude of 35 mm, the traditional sliding mode control method has a maximum tracking error of 0.3326 mm under the premise of small chattering; the boundary layer sliding mode control method has a maximum tracking error of 0.3927 mm without chattering, and the maximum tracking error of continuous switching adaptive sliding mode control is 0.1589 mm, and there is no chattering. Under the same control parameters, after adding a load of 0.5 kg, the maximum tracking errors of the traditional sliding mode control method, the boundary layer sliding mode control method and the continuous switching adaptive sliding mode control are 0.4292 mm, 0.5111 mm and 0.1848 mm, respectively. Originality/value The proposed method not only switches continuously, but also the amplitude of the switching signal is adaptive, while maintaining the robustness of the conventional sliding mode control method, which has strong engineering application value.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Maode Yan ◽  
Jiacheng Song ◽  
Panpan Yang ◽  
Lei Zuo

This paper investigates the vehicle platoon control problems with both velocity constraints and input saturation. Firstly, radial basis function neural networks (RBF NNs) are employed to approximate the unknown driving resistance of a vehicle’s dynamic model. Then, a bidirectional topology, where vehicles can only communicate with their direct preceding and following neighbors, is used to depict the relationship among the vehicles in the platoon. On this basis, a neural adaptive sliding-mode control algorithm with an anti-windup compensation technique is proposed to maintain the vehicle platoon with desired distance. Moreover, the string stability and the strong string stability of the whole vehicle platoon are proven through the stability theorem. Finally, numerical simulations verify the feasibility and effectiveness of the proposed control method.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Jianguo Guo ◽  
Hao Zhang ◽  
Xiaodong Lu ◽  
Jun Zhou

In this paper, a new adaptive sliding mode control method is presented for the longitudinal model of a generic hypersonic vehicle subject to uncertainties and external disturbance. Firstly, an oriented-control model with mismatched uncertainties is built for a generic hypersonic vehicle. Secondly, the back-stepping technique is introduced to design a sliding mode controller with an adaptive law to adapt to the disturbance and uncertainty. Thirdly, a set of nonlinear disturbance observers are designed to estimate the lumped disturbance and compensate the sliding mode controller, and the stability of the proposed controller is analyzed by utilizing Lyapunov stability theory. Finally, simulation results show that the effectiveness of the proposed controller is validated by the nonlinear model and the proposed method exhibits promising robustness to mismatched uncertainties.


2013 ◽  
Vol 392 ◽  
pp. 324-328
Author(s):  
Guang Hui Chang ◽  
Shi Jian Zhu ◽  
Jing Jun Lou

Giant magnetostrictive actuator (GMA) has been used in precise position, active vibration control etc. for its merits of large output force and displacement. At low drive level, GMA presents linear relation between displacement and input current, while nonlinear appears when applied moderate or high drive level. This paper addresses the development of model-based adaptive sliding mode control designs for GMA operating in nonlinear and hysteretic regimes. Homogenized energy model in combination with a quadratic moment rotation model for magnetostriction is adopted in this paper to describe hysteresis of GMA, and its inverse model is employed as a inverse filter before GMA system to compensate the hysteresis and nonlinear. The proposed control law guaranteed global stability of the control system with certain accuracy in tracking desired trajectories. Simulation result verified the correctness and effectiveness of the extracted control method.


Sign in / Sign up

Export Citation Format

Share Document