Unsteady magnetohydrodynamic stagnation point flow of a nanofluid past a permeable shrinking sheet

Author(s):  
Nepal Chandra Roy ◽  
Ioan Pop
2017 ◽  
Vol 65 (2) ◽  
pp. 155-162 ◽  
Author(s):  
A. Rauf ◽  
S. A. Shehzad ◽  
T. Hayat ◽  
M. A. Meraj ◽  
A. Alsaedi

AbstractIn this article the stagnation point flow of electrically conducting micro nanofluid towards a shrinking sheet, considering a chemical reaction of first order is investigated. Involvement of magnetic field occurs in the momentum equation, whereas the energy and concentrations equations incorporated the influence of thermophoresis and Brownian motion. Convective boundary condition on temperature and zero mass flux condition on concentration are implemented. Partial differential equations are converted into the ordinary ones using suitable variables. The numerical technique is utilized to discuss the results for velocity, microrotation, temperature, and concentration fields.


2021 ◽  
Vol 10 (9) ◽  
pp. 3273-3282
Author(s):  
M.E.H. Hafidzuddin ◽  
R. Nazar ◽  
N.M. Arifin ◽  
I. Pop

The problem of steady laminar three-dimensional stagnation-point flow on a permeable stretching/shrinking sheet with second order slip flow model is studied numerically. Similarity transformation has been used to reduce the governing system of nonlinear partial differential equations into the system of ordinary (similarity) differential equations. The transformed equations are then solved numerically using the \texttt{bvp4c} function in MATLAB. Multiple solutions are found for a certain range of the governing parameters. The effects of the governing parameters on the skin friction coefficients and the velocity profiles are presented and discussed. It is found that the second order slip flow model is necessary to predict the flow characteristics accurately.


2018 ◽  
Vol 28 (11) ◽  
pp. 2650-2663 ◽  
Author(s):  
Fatinnabila Kamal ◽  
Khairy Zaimi ◽  
Anuar Ishak ◽  
Ioan Pop

PurposeThis paper aims to analyze the behavior of the stagnation-point flow and heat transfer over a permeable stretching/shrinking sheet in the presence of the viscous dissipation and heat source effects.Design/methodology/approachThe governing partial differential equations are converted into ordinary differential equations by similarity transformations before being solved numerically using the bvp4c function built in Matlab software. Effects of suction/injection parameter and heat source parameter on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented in the forms of tables and graphs. A temporal stability analysis will be conducted to verify which solution is stable for the dual solutions exist for the shrinking case.FindingsThe analysis indicates that the skin friction coefficient and the local Nusselt number as well as the velocity and temperature were influenced by suction/injection parameter. In contrast, only the local Nusselt number, which represents heat transfer rate at the surface, was affected by heat source effect. Further, numerical results showed that dual solutions were found to exist for the certain range of shrinking case. Then, the stability analysis is performed, and it is confirmed that the first solution is linearly stable and has real physical implication, while the second solution is not.Practical implicationsIn practice, the study of the steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet in the presence of heat source effect is very crucial and useful. The problems involving fluid flow over stretching or shrinking surfaces can be found in many industrial manufacturing processes such as hot rolling, paper production and spinning of fibers. Owing to the numerous applications, the study of stretching/shrinking sheet was subsequently extended by many authors to explore various aspects of skin friction coefficient and heat transfer in a fluid. Besides that, the study of suction/injection on the boundary layer flow also has important applications in the field of aerodynamics and space science.Originality/valueAlthough many studies on viscous fluid has been investigated, there is still limited discoveries found on the heat source and suction/injection effects. Indeed, this paper managed to obtain the second (dual) solutions and stability analysis is performed. The authors believe that all the results are original and have not been published elsewhere.


2013 ◽  
Vol 26 (4) ◽  
pp. 829-834 ◽  
Author(s):  
Khamisah Jafar ◽  
Anuar Ishak ◽  
Roslinda Nazar

Sign in / Sign up

Export Citation Format

Share Document