Identification of different miRNAs and their relevant miRNA targeted genes involved in sister chromatid cohesion and segregation (SCCS)/chromatin remodeling pathway on T1G3 urothelial carcinoma (UC) response to BCG immunotherapy

Author(s):  
Amira Awadalla ◽  
Mohamed H Zahran ◽  
Hassan Abol-Enein ◽  
Abdel-Rahman N Zekri ◽  
Mohamed Abd Elbaset ◽  
...  
2004 ◽  
Vol 29 (8) ◽  
pp. 389-392 ◽  
Author(s):  
Christian G. Riedel ◽  
Juraj Gregan ◽  
Stephan Gruber ◽  
Kim Nasmyth

Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 805-813 ◽  
Author(s):  
Edward S Davis ◽  
Lucia Wille ◽  
Barry A Chestnut ◽  
Penny L Sadler ◽  
Diane C Shakes ◽  
...  

Abstract Two genes, originally identified in genetic screens for Caenorhabditis elegans mutants that arrest in metaphase of meiosis I, prove to encode subunits of the anaphase-promoting complex or cyclosome (APC/C). RNA interference studies reveal that these and other APC/C subunits are essential for the segregation of chromosomal homologs during meiosis I. Further, chromosome segregation during meiosis I requires APC/C functions in addition to the release of sister chromatid cohesion.


Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 953-964 ◽  
Author(s):  
D P Moore ◽  
W Y Miyazaki ◽  
J E Tomkiel ◽  
T L Orr-Weaver

Abstract We describe a Drosophila mutation, Double or nothing (Dub), that causes meiotic nondisjunction in a conditional, dominant manner. Previously isolated mutations in Drosophila specifically affect meiosis either in females or males, with the exception of the mei-S332 and ord genes which are required for proper sister-chromatid cohesion. Dub is unusual in that it causes aberrant chromosome segregation almost exclusively in meiosis I in both sexes. In Dub mutant females both nonexchange and exchange chromosomes undergo nondisjunction, but the effect of Dub on nonexchange chromosomes is more pronounced. Dub reduces recombination levels slightly. Multiple nondisjoined chromosomes frequently cosegregate to the same pole. Dub results in nondisjunction of all chromosomes in meiosis I of males, although the levels are lower than in females. When homozygous, Dub is a conditional lethal allele and exhibits phenotypes consistent with cell death.


Genetics ◽  
1997 ◽  
Vol 146 (4) ◽  
pp. 1319-1331 ◽  
Author(s):  
Sharon E Bickel ◽  
Dudley W Wyman ◽  
Terry L Orr-Weaver

The ord gene is required for proper segregation of all chromosomes in both male and female Drosophila meiosis. Here we describe the isolation of a null ord allele and examine the consequences of ablating ord function. Cytologically, meiotic sister-chromatid cohesion is severely disrupted in flies lacking ORD protein. Moreover, the frequency of missegregation in genetic tests is consistent with random segregation of chromosomes through both meiotic divisions, suggesting that sister cohesion may be completely abolished. However, only a slight decrease in viability is observed for ord null flies, indicating that ORD function is not essential for cohesion during somatic mitosis. In addition, we do not observe perturbation of germ-line mitotic divisions in flies lacking ORD activity. Our analysis of weaker ord alleles suggests that ORD is required for proper centromeric cohesion after arm cohesion is released at the metaphase I/anaphase I transition. Finally, although meiotic cohesion is abolished in the ord null fly, chromosome loss is not appreciable. Therefore, ORD activity appears to promote centromeric cohesion during meiosis II but is not essential for kinetochore function during anaphase.


Sign in / Sign up

Export Citation Format

Share Document