Accuracy of C2 pedicle screw placement using the anatomic freehand technique

2014 ◽  
Vol 125 ◽  
pp. 24-27 ◽  
Author(s):  
Mohamad Bydon ◽  
Dimitrios Mathios ◽  
Mohamed Macki ◽  
Rafael De la Garza-Ramos ◽  
Nafi Aygun ◽  
...  
2018 ◽  
Vol 29 (3) ◽  
pp. 235-240 ◽  
Author(s):  
Martin H. Pham ◽  
Joshua Bakhsheshian ◽  
Patrick C. Reid ◽  
Ian A. Buchanan ◽  
Vance L. Fredrickson ◽  
...  

OBJECTIVEFreehand placement of C2 instrumentation is technically challenging and has a learning curve due the unique anatomy of the region. This study evaluated the accuracy of C2 pedicle screws placed via the freehand technique by neurosurgical resident trainees.METHODSThe authors retrospectively reviewed all patients treated at the LAC+USC Medical Center undergoing C2 pedicle screw placement in which the freehand technique was used over a 1-year period, from June 2016 to June 2017; all procedures were performed by neurosurgical residents. Measurements of C2 were obtained from preoperative CT scans, and breach rates were determined from coronal reconstructions on postoperative scans. Severity of breaches reflected the percentage of screw diameter beyond the cortical edge (I = < 25%; II = 26%–50%; III = 51%–75%; IV = 76%–100%).RESULTSNeurosurgical residents placed 40 C2 pedicle screws in 24 consecutively treated patients. All screws were placed by or under the guidance of Pham, who is a postgraduate year 7 (PGY-7) neurosurgical resident with attending staff privileges, with a PGY-2 to PGY-4 resident assistant. The authors found an average axial pedicle diameter of 5.8 mm, axial angle of 43.1°, sagittal angle of 23.0°, spinal canal diameter of 25.1 mm, and axial transverse foramen diameter of 5.9 mm. There were 17 screws placed by PGY-2 residents, 7 screws placed by PGY-4 residents, and 16 screws placed by the PGY-7 resident. The average screw length was 26.0 mm, with a screw diameter of 3.5 mm or 4.0 mm. There were 7 total breaches (17.5%), of which 4 were superior (10.0%) and 3 were lateral (7.5%). There were no medial breaches. The breaches were classified as grade I in 3 cases (42.9%), II in 3 cases (42.9%), III in 1 case (14.3%), and IV in no cases. There were 3 breaches that occurred via placement by a PGY-2 resident, 3 breaches by a PGY-4 resident, and 1 breach by the PGY-7 resident. There were no clinical sequelae due to these breaches.CONCLUSIONSFreehand placement of C2 pedicle screws can be done safely by neurosurgical residents in early training. When breaches occurred, they tended to be superior in location and related to screw length choice, and no breaches were found to be clinically significant. Controlled exposure to this unique anatomy is especially pertinent in the era of work-hour restrictions.


2009 ◽  
Vol 8 (1) ◽  
pp. 80-83
Author(s):  
Adebukoa Onibokun ◽  
Simona Bistazzoni ◽  
Marco Sassi ◽  
Larry T. Khoo

OBJECTIVE: more detailed anatomical knowledge of the C2 pedicle is required to optimize and minimize the risk of screw placement. The aim of this study was to evaluate the linear and angular dimensions of the true C2 pedicle using axial CT. METHODS: ninety three patients (47 males, 46 females mean age 48 years) who had cervical spinal CT imaging performed were evaluated for this study. Axial images of the C2 pedicle were selected and the following pedicle parameters were determined: pedicle width (PW, the mediolateral diameter of the pedicle isthmus, perpendicular to the pedicle axis) and pedicle transverse angle (PTA, that is, the angle between the pedicle axis and the midline of the vertebral body). RESULTS: the overall mean pedicle width was 5.8 1.2mm. The mean pedicle width in males (6.01.3mm) was greater than that in the female subjects (5.6 1.1mm). This difference was not found to be statistically significant (p=.6790). The overall mean pedicle transverse angle was 43.93.9 degrees. The mean PTA in males was 43.23.8 degrees, while that in females was 44.73.7 degrees. CONCLUSION: preoperative planning is absolutely mandatory, particularly in determining not only screw trajectory, but in analyzing individual patient anatomy and reception to a C2 pedicle screw.


2016 ◽  
Vol 94 ◽  
pp. 368-374 ◽  
Author(s):  
R. Shane Tubbs ◽  
Andre Granger ◽  
Christian Fisahn ◽  
Marios Loukas ◽  
Marc Moisi ◽  
...  

Spine ◽  
2014 ◽  
Vol 39 (18) ◽  
pp. E1058-E1065 ◽  
Author(s):  
Pankaj Kumar Singh ◽  
Kanwaljeet Garg ◽  
Duttaraj Sawarkar ◽  
Deepak Agarwal ◽  
Guru Dutta Satyarthee ◽  
...  

2017 ◽  
Vol 42 (5) ◽  
pp. E14 ◽  
Author(s):  
Granit Molliqaj ◽  
Bawarjan Schatlo ◽  
Awad Alaid ◽  
Volodymyr Solomiichuk ◽  
Veit Rohde ◽  
...  

OBJECTIVEThe quest to improve the safety and accuracy and decrease the invasiveness of pedicle screw placement in spine surgery has led to a markedly increased interest in robotic technology. The SpineAssist from Mazor is one of the most widely distributed robotic systems. The aim of this study was to compare the accuracy of robot-guided and conventional freehand fluoroscopy-guided pedicle screw placement in thoracolumbar surgery.METHODSThis study is a retrospective series of 169 patients (83 women [49%]) who underwent placement of pedicle screw instrumentation from 2007 to 2015 in 2 reference centers. Pathological entities included degenerative disorders, tumors, and traumatic cases. In the robot-assisted cohort (98 patients, 439 screws), pedicle screws were inserted with robotic assistance. In the freehand fluoroscopy-guided cohort (71 patients, 441 screws), screws were inserted using anatomical landmarks and lateral fluoroscopic guidance. Patients treated before 2009 were included in the fluoroscopy cohort, whereas those treated since mid-2009 (when the robot was acquired) were included in the robot cohort. Since then, the decision to operate using robotic assistance or conventional freehand technique has been based on surgeon preference and logistics. The accuracy of screw placement was assessed based on the Gertzbein-Robbins scale by a neuroradiologist blinded to treatment group. The radiological slice with the largest visible deviation from the pedicle was chosen for grading. A pedicle breach of 2 mm or less was deemed acceptable (Grades A and B) while deviations greater than 2 mm (Grades C, D, and E) were classified as misplacements.RESULTSIn the robot-assisted cohort, a perfect trajectory (Grade A) was observed for 366 screws (83.4%). The remaining screws were Grades B (n = 44 [10%]), C (n = 15 [3.4%]), D (n = 8 [1.8%]), and E (n = 6 [1.4%]). In the fluoroscopy-guided group, a completely intrapedicular course graded as A was found in 76% (n = 335). The remaining screws were Grades B (n = 57 [12.9%]), C (n = 29 [6.6%]), D (n = 12 [2.7%]), and E (n = 8 [1.8%]). The proportion of non-misplaced screws (corresponding to Gertzbein-Robbins Grades A and B) was higher in the robot-assisted group (93.4%) than the freehand fluoroscopy group (88.9%) (p = 0.005).CONCLUSIONSThe authors’ retrospective case review found that robot-guided pedicle screw placement is a safe, useful, and potentially more accurate alternative to the conventional freehand technique for the placement of thoracolumbar spinal instrumentation.


Sign in / Sign up

Export Citation Format

Share Document