P323 Value of pulse-train stimulation of the pedicle tracks for the detection of thoracic screws malposition in scoliosis surgery

2017 ◽  
Vol 128 (9) ◽  
pp. e283
Author(s):  
Laura López Viñas ◽  
Lidia Cabañes Martínez ◽  
M. del Mar Moreno ◽  
Carlos Valera ◽  
Gema De Blas ◽  
...  
1994 ◽  
Vol 71 (6) ◽  
pp. 2061-2073 ◽  
Author(s):  
T. Inoue ◽  
S. H. Chandler ◽  
L. J. Goldberg

1. We have examined the effects of iontophoretic application of antagonists to excitatory amino acid (EAA) receptors, as well as glycine and gamma-aminobutyric acid (GABA), on rhythmically active (RA) brain stem neurons during cortically induced masticatory activity (RMA) in the anesthetized guinea pig. Ten of these neurons were antidromically activated at latencies of 0.3–0.9 ms by stimulation of the trigeminal motor nucleus (MoV). 2. RA neurons were divided into closer and opener type according to the phase of activation during RMA. Iontophoretic application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a specific non-N-methyl-D-aspartate (NMDA) receptor antagonist, suppressed discharge of both closer and opener type RA neurons during RMA. In contrast, iontophoretic application of 3-((1)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), a specific NMDA receptor antagonist, was not effective in suppressing discharge of most opener type RA neurons but did reduce activity of closer type RA neurons. 3. Spike discharge of most RA neurons was time locked to each cortical stimulus during RMA. Some of the RA neurons were activated at a short latency to short pulse train stimulation of the cortex in the absence of RMA. In most cases CNQX reduced such time-locked responses during RMA and greatly reduced discharge evoked by short pulse stimulation of the cortex in all cases. In contrast, CPP was not as effective in suppressing either the time-locked responses during RMA or the discharge evoked by short pulse train stimulation of the cortex. 4. D,L-Homocysteic acid (HCA) application produced low level maintained discharge in RA neurons before RMA induction. When RMA was evoked in combination with HCA, rhythmical burst discharges with distinct interburst periods during the opening phase of RMA were observed in most closer type RA neurons. In contrast, during RMA in combination with HCA application, opener type RA neurons showed burst discharges that were modulated during the RMA cycle but lacked distinct interburst periods during the closer phase of the cycle. 5. During application of strychnine (STR), a glycine antagonist, discharge of closer type RA neurons increased in the opener phase of RMA during continuous HCA application. In contrast, bicuculline methiodide (BIC), a GABA antagonist, did not increase unit discharge of closer type RA neurons in the opener phase of RMA. 6. It is concluded that closer type RA neurons receive, alternatively, EAA-mediated excitatory and glycine-mediated inhibitory masticatory synaptic drive signals during RMA.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 83 (3) ◽  
pp. 994-1001 ◽  
Author(s):  
David T. George ◽  
Stuart A. Binder-Macleod ◽  
Thomas N. Delosso ◽  
William P. Santamore

George, David T., Stuart A. Binder-Macleod, Thomas N. Delosso, and William P. Santamore. Variable-frequency train stimulation of canine latissimus dorsi muscle during shortening contractions. J. Appl. Physiol. 83(3): 994–1001, 1997.—In cardiomyoplasty, the latissimus dorsi muscle (LDM) is wrapped around the heart ventricles and electrically activated with a constant-frequency train (CFT). This study tested the hypotheses that increased mechanical performance from the LDM could be achieved by activating the muscle with variable-frequency trains (VFTs) of shorter duration or containing fewer stimulus pulses than the CFT now used. The mechanical performance of the canine LDM ( n = 7) during shortening contractions was measured while the muscle was stimulated with 5- and 6-pulse CFTs (of duration 132 and 165 ms, respectively) and 5- and 6-pulse VFTs (of duration 104 and 143 ms, respectively) that were designed to take advantage of the catchlike property of skeletal muscle. Measurements were made from fresh and fatigued muscles. For the fresh muscles, the VFTs elicited significantly greater peak power than did the 6-pulse CFT. When the muscles were fatigued, VFT stimulation significantly improved both the peak and mean power produced compared with stimulation by CFTs. These results show that stimulation of the LDM with shorter duration VFTs is potentially useful for application in cardiomyoplasty.


2000 ◽  
Vol 149 (1-2) ◽  
pp. 129-137 ◽  
Author(s):  
A.J. Matsuoka ◽  
P.J. Abbas ◽  
J.T. Rubinstein ◽  
C.A. Miller

1989 ◽  
Vol 13 (2) ◽  
pp. 116-122 ◽  
Author(s):  
Anton Moritz ◽  
Sharon Grundfest-Broniatowski ◽  
Laszlo Ilyes ◽  
Jerry Kasick ◽  
Gordon Jacobs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document