tail clip
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 17)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 15 ◽  
Author(s):  
Zhanglei Dong ◽  
Gaolong Zhang ◽  
Saiqiong Xiang ◽  
Chenchen Jiang ◽  
Zhichuan Chen ◽  
...  

Propofol addiction has been detected in humans and rats, which may be facilitated by stress. Corticotropin-releasing factor acts through the corticotropin-releasing factor (CRF) receptor-1 (CRF1R) and CRF2 receptor-2 (CRF2R) and is a crucial candidate target for the interaction between stress and drug abuse, but its role on propofol addiction remains unknown. Tail clip stressful stimulation was performed in rats to test the stress on the establishment of the propofol self-administration behavioral model. Thereafter, the rats were pretreated before the testing session at the bilateral lateral ventricle with one of the doses of antalarmin (CRF1R antagonist, 100–500 ng/site), antisauvagine 30 (CRF2R antagonist, 100–500 ng/site), and RU486 (glucocorticoid receptor antagonist, 100–500 ng/site) or vehicle. The dopamine D1 receptor (D1R) in the nucleus accumbens (NAc) was detected to explore the underlying molecular mechanism. The sucrose self-administration establishment and maintenance, and locomotor activities were also examined to determine the specificity. We found that the establishment of propofol self-administration was promoted in the tail clip treated group (the stress group), which was inhibited by antalarmin at the dose of 100–500 ng/site but was not by antisauvagine 30 or RU486. Accordingly, the expression of D1R in the NAc was attenuated by antalarmin, dose-dependently. Moreover, pretreatments fail to change sucrose self-administration behavior or locomotor activities. This study supports the role of CRF1R in the brain in mediating the central reward processing through D1R in the NAc and provided a possibility that CRF1R antagonist may be a new therapeutic approach for the treatment of propofol addiction.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3180-3180
Author(s):  
Sabine Pestel ◽  
Hendrik Peil ◽  
Steffi Knoll Machado ◽  
Philipp Claar ◽  
Elmar Raquet ◽  
...  

Abstract Introduction: The recessive X-linked bleeding disorder Hemophilia B is caused by a mutation in the coagulation factor (F) IX gene leading to partial or total loss of its function. Preventive treatment with replacement long-acting FIX is an attractive option for patients to reduce administration frequency and prevent bleeding. New recombinant FIX therapeutics like the albumin-fused FIX (rFIX-FP) or the Fc-fused FIX (rFIX-Fc) enable longer half-life in circulation and thus less frequent administration, as compared to non-fused FIX (rFIX). Studies in FIX knockout (KO) mice were conducted to characterize the effect of the modifications on the pharmacokinetic (PK) and pharmacodynamic (PD) properties of the different recombinant FIX products. Methods: Pharmacokinetics: Recombinant FIXs were administered intravenously at doses of 25 nmol/kg (corresponding to ~175-400 IU/kg FIX clotting activity) to FIX KO mice. Blood samples were collected starting at 5 min, and up to 336 h. FIX plasma levels were measured with an ELISA-based assay with anti-human FIX paired antibodies. PK was evaluated by non-compartmental analysis. Biodistribution: 3H-labeled recombinant FIXs were administered intravenously at doses of 200 IU/kg to FIX KO mice. Plasma levels and organ distribution were quantified starting at 15 min, and up to 240 h. Pharmacodynamics: FIX KO mice were treated intravenously with 50 IU/kg FIX clotting activity (nominal or labeled potency) of different rFIX products at 24, 72, 120 168 and 336 h prior to determination of bleeding time and total blood loss in a tail clip bleeding model. Immediately upon lesion, the tail tip was submerged in isotonic saline (0.9 %), kept at the mice physiological body temperature. Time to hemostasis is quantified as the time until bleeding stops for a minimum of 2 min. The volume of total blood loss was calculated by measuring the hemoglobin present in the isotonic saline solution at the end of the experiment. Results: Distinct PK profiles were observed for the three FIX molecules, where rFIX and rFIX-Fc exhibit an initial rapid distribution phase from plasma, while rFIX-FP showed a monophasic elimination profile up to 120 h post administration (p.a.). In the terminal phase, rFIX levels were quantifiable for up to 48 h p.a., while both; rFIX-FP and rFIX-Fc were measurable in plasma up to 240 h p.a. In line with this, the overall exposure AUC 0-inf is ranked in the following order: rFIX-FP > rFIX-Fc > rFIX. In the biodistribution study, a similar plasma PK profile was determined. Given the sensitivity of the radioactive method, an exposure plateau was observed for rFIX-Fc, and at lower levels for rFIX, whereas rFIX-FP continued to exhibit monophasic plasma clearance behavior. rFIX-FP exposure in the extravascular space (EVS) was lower than for the other FIX products. This is in line with volumes of distribution (Vss and Vz) which were highest for rFIX-Fc (AUC ranking rFIX-Fc > rFIX > rFIX-FP). FIX hemostatic efficacy in tail clip model was comparable for all 3 FIXs at the early time points but diverged at later time points post dosing. The blood loss and bleeding time measurements returned to baseline within 168 h for rFIX and rFIX-Fc, while the rFIX-FP group maintained robust hemostatic activity for up to 336 h. In contrast to lowest tissue exposure of rFIX-FP, the plasma AUC for rFIX-FP was highest, compared to FIX-Fc or FIX. In line, efficacy over time was also highest for rFIX-FP, suggesting that tissue exposure might not be the main driver for hemostatic activity. Conclusion: Different FIX products exhibit divergent PK and PD behaviors. rFIX-FP plasma PK profile suggests somewhat lower tissue distribution in comparison to rFIX-Fc and rFIX, which was confirmed in the tissue biodistribution study. Despite its limited extravasation into tissue, rFIX-FP exhibits superior and prolonged hemostatic activity in the FIX KO mouse tail clip model. rFIX and rFIX-Fc show comparable tissue biodistribution behavior, with robust extravasation into the EVS. Despite having the longest half-life and overall (plasma and tissue) exposure in the mouse, rFIX-Fc lost hemostatic activity in the tail clip model significantly faster than rFIX-FP. As a result, hemostatic efficacy was highest for the FIX-FP, the product with the lowest distribution volumes. The results therefore suggest that EVS is not the main determining factor for FIX efficacy in vivo. Disclosures Pestel: CSL Behring Innovation GmbH: Current Employment, Current equity holder in publicly-traded company. Peil: CSL Behring Innovation GmbH: Current Employment, Current equity holder in publicly-traded company. Knoll Machado: CSL Behring Innovation GmbH: Current Employment, Current equity holder in publicly-traded company. Claar: CSL Behring Innovation GmbH: Current Employment, Current equity holder in publicly-traded company. Raquet: CSL Behring Innovation GmbH: Current Employment, Current equity holder in publicly-traded company. Ponnuswamy: CSL Behring Innovation GmbH: Current Employment, Current equity holder in publicly-traded company. Mischnik: CSL Behring Innovation GmbH: Current Employment, Current equity holder in publicly-traded company. Herzog: CSL Behring GmbH: Current Employment, Current equity holder in publicly-traded company.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mennatallah A Gowayed ◽  
Amany Abdel-Bary ◽  
Rasha A El-Tahan

Abstract Background Surgical procedures cause perioperative immunosuppression and neuroendocrine stress, exerted by activation of the autonomic nervous system and the hypothalamic-pituitary-adrenal axis. The acetylcholinesterase inhibitor (ACHEI); neostigmine, is known clinically for its analgesic effect in the perioperative phases proving high efficacy; besides possessing anti-inflammatory properties controlling immune cells and cytokine level. Hence, this study evaluated and compared the analgesic and anti-inflammatory activities of the combination of selective Cox-2 inhibitor; celecoxib, with neostigmine versus a combination of the non-selective Cox inhibitor; diclofenac, with neostigmine; in different experimental models of analgesia and inflammation in rats. Methods Analgesic activity of neostigmine with/without diclofenac or celecoxib was assessed in female Sprague-Dawely rats using the tail clip model and acetic acid induced writhing. Serum level of β-endorphin was assessed after the tail clip test. The anti-inflammatory activity was evaluated using acute and sub-chronic formalin induced paw edema. At the end of the sub-chronic formalin test, blood samples were collected for analysis of anti-inflammatory, liver and kidney function markers. Livers, kidneys and hind paws were also examined histopathologically. Results Addition of neostigmine to selective or non-selective NSAIDs (celecoxib or diclofenac) causes an increased level of analgesia of NSAIDs with rapid onset of action and short duration, while causing potentiation of the anti-inflammatory effect of neostigmine as seen in the tail clip, writhing, formalin test, Cox-1 and Cox-2 activities, serum β-endorphin, TNF-α, NF-кB and HS-CRP. All combinations of this study disturb some kidney and liver functions, however with normal histopathological appearances, while hind paws reveal improved inflammatory infiltration in all treated groups. Conclusions Selective and non-selective NSAIDs examined in this study could be good adjunct options to general anesthetic agents and neostigmine in perioperative stages, an outcome that needs further clinical investigations.


Blood ◽  
2021 ◽  
Author(s):  
Amelia R. Wilhelm ◽  
Nicole A. Parsons ◽  
Benjamin J Samelson-Jones ◽  
Robert J Davidson ◽  
Charles Esmon ◽  
...  

Mechanisms thought to regulate activated factor VIII (FVIIIa) cofactor function include A2-domain dissociation and activated protein C (APC) cleavage. Unlike A2-domain dissociation, there is no known phenotype associated with altered APC cleavage of FVIII and biochemical studies suggest APC plays a marginal role in FVIIIa regulation. However, the in vivo contribution of FVIIIa inactivation by APC is unexplored. Here we compared wild-type B-domainless FVIII (FVIII-WT) recombinant protein to an APC resistant FVIII variant (FVIII-R336Q/R562Q; FVIII-QQ). FVIII-QQ demonstrated expected APC resistance without other changes in procoagulant function or A2-domain dissociation. In plasma-based studies, FVIII-WT/FVIIIa-WT demonstrated a dose-dependent sensitivity to APC with or without protein S, while FVIII-QQ/FVIIIa-QQ did not. Importantly, FVIII-QQ demonstrated approximately 5-fold increased procoagulant function relative to FVIII-WT in the tail clip and ferric chloride injury models in hemophilia A (HA) mice. To minimize the contribution of FV inactivation by APC in vivo, the tail clip assay was performed in homozygous HA/FV-Leiden mice infused with FVIII-QQ or FVIII-WT in the presence or absence of mAb1609, an antibody that blocks murine PC/APC hemostatic function. FVIII-QQ again demonstrated enhanced hemostatic function in HA/FV-Leiden mice; however, FVIII-QQ and FVIII-WT performed analogously in the presence of the PC/APC inhibitory antibody, supporting the increased hemostatic effect of FVIII-QQ was APC specific. Our data demonstrate APC contributes to the in vivo regulation of FVIIIa, which has the potential to be exploited to develop novel HA therapeutics.


2020 ◽  
Vol 9 (5) ◽  
pp. 291-299
Author(s):  
E.O Agbaje ◽  
◽  
A Iwe ◽  
OJ Oguntokun ◽  
◽  
...  

Background: Nymphaea lotus Linn. (Nymphaeaceae), commonly known as white water-lily, white lotus or Egyptian lotus, is an important and well-known medicinal plant, widely used in the Ayurveda and Siddha systems of medicine for the treatment of diabetes, inflammation, liver disorders, urinary disorders, fever, skin diseases, cancer, gonorrhoea, pain and bronchitis. Objective: The study was designed to explore anti-nociceptive potential of aqueous extract of Nymphaea lotus leaf, its possible mechanism of action, and antioxidant properties. Methods: The anti-nociceptive activity of Nymphaea lotus (50, 100 and 250 mg/kg) was explored using writhing, formalin, tail clip and hot plate tests, while formalin test was used to investigate the involvement of opioid, dopamine, serotonin, K+ channel blocker, α1-adrenergic and α2- adrenergic systems. The antioxidant effect was carried out using DPPH, nitric oxide free radical scavenging activity and the reducing power effect. Total phenolic and flavonoids contents were also explored. Results: Oral administration of N. lotus in doses of 50, 100 and 250 mg/kg recorded a significant (p<0.05) dose dependent obstruction of nociception. A remarkable effect was recorded with the writhing and formalin tests and a significant effect was also observed in the tail clip and hot plate test, which suggests peripheral and central anti-nociceptive activity of the extract. The anti-nociceptive effect produced by N. lotus was significantly reversed by naloxone and yohimbine, suggesting the possible involvement of opioid and α2–adrenergic systems in its anti-nociceptive activity. N. lotus also displayed a potent antioxidant activity. Conclusion: These findings justify the folkloric use of N. lotus in pain management.


2020 ◽  
Author(s):  
Mennatallah Gowayed ◽  
Amany Abdel-Bary ◽  
Rasha A El-Tahan

Abstract Background Surgical procedures cause perioperative immunosuppression and neuroendocrine stress, exerted by activation of the autonomic nervous system and the hypothalamic-pituitary-adrenal axis. The acetylcholinesterase inhibitor (ACHEI); neostigmine, is known clinically for its analgesic effect in the perioperative phases proving high efficacy; besides possessing anti-inflammatory properties controlling immune cells and cytokine level. Hence, this study evaluated and compared the analgesic and anti-inflammatory activities of the combination of selective Cox-2 inhibitor; celecoxib, with neostigmine versus a combination of the non-selective Cox inhibitor; diclofenac, with neostigmine; in different experimental models of analgesia and inflammation in rats. Methods Analgesic activity of neostigmine with/without diclofenac or celecoxib was assessed in female Sprague-Dawely rats using the tail clip model and acetic acid induced writhing. Serum level of β-endorphin was assessed after the tail clip test. The anti-inflammatory activity was evaluated using acute and sub-chronic formalin induced paw edema. At the end of the sub-chronic formalin test, blood samples were collected for analysis of anti-inflammatory, liver and kidney function markers. Livers, kidneys and hind paws were also examined histopathologically. Results Addition of neostigmine to selective or non-selective NSAIDs (celecoxib or diclofenac) causes an increased level of analgesia of NSAIDs with rapid onset of action and short duration, while causing potentiation of the anti-inflammatory effect of neostigmine as seen in the tail clip, writhing, formalin test, Cox-1 and Cox-2 activities, serum β-endorphin, TNF-α, NF-кB and HS-CRP. All combinations of this study disturb some kidney and liver functions, however with normal histopathological appearances, while hind paws reveal improved inflammatory infiltration in all treated groups. Conclusion : Selective and non-selective NSAIDs examined in this study could be good adjunct options to general anesthetic agents and neostigmine in perioperative stages, an outcome that needs further clinical investigation.


Blood ◽  
2020 ◽  
Vol 136 (6) ◽  
pp. 740-748 ◽  
Author(s):  
Stephen Ferrière ◽  
Ivan Peyron ◽  
Olivier D. Christophe ◽  
Charlotte Kawecki ◽  
Caterina Casari ◽  
...  

Abstract The bispecific antibody emicizumab is increasingly used for hemophilia A treatment. However, its specificity for human factors IX and X (FIX and FX) has limited its in vivo functional analysis to primate models of acquired hemophilia. Here, we describe a novel mouse model that allows emicizumab function to be examined. Briefly, FVIII-deficient mice received IV emicizumab 24 hours before tail-clip bleeding was performed. A second infusion with human FIX and FX, administered 5 minutes before bleeding, generated consistent levels of emicizumab (0.7-19 mg/dL for 0.5-10 mg/kg doses) and of both FIX and FX (85 and 101 U/dL, respectively, after dosing at 100 U/kg). Plasma from these mice display FVIII-like activity in assays (diluted activated partial thromboplastin time and thrombin generation), similar to human samples containing emicizumab. Emicizumab doses of 1.5 mg/kg and higher significantly reduced blood loss in a tail-clip–bleeding model using FVIII-deficient mice. However, reduction was incomplete compared with mice treated with human FVIII concentrate, and no difference in efficacy between doses was observed. From this model, we deducted FVIII-like activity from emicizumab that corresponded to a dose of 4.5 U of FVIII per kilogram (ie, 9.0 U/dL). Interestingly, combined with a low FVIII dose (5 U/kg), emicizumab provided enough additive activity to allow complete bleeding arrest. This model could be useful for further in vivo analysis of emicizumab.


2020 ◽  
Author(s):  
Mennatallah Gowayed ◽  
Amany Abdel-Bary ◽  
Rasha A El-Tahan

Abstract Background: Surgical procedures cause perioperative immunosuppression and neuroendocrine stress, exerted by activation of the autonomic nervous system and the hypothalamic-pituitary-adrenal axis. The acetylcholinesterase inhibitor (ACHEI); neostigmine, is known clinically for its analgesic effect in the perioperative phases proving high efficacy; besides possessing anti-inflammatory properties controlling immune cells and cytokine level. Hence, this study evaluated and compared the analgesic and anti-inflammatory activities of the combination of selective Cox-2 inhibitor; celecoxib, with neostigmine versus a combination of the non-selective Cox inhibitor; diclofenac, with neostigmine; in different experimental models of analgesia and inflammation in rats.Methods: Analgesic activity of neostigmine with/without diclofenac or celecoxib was assessed in female Sprague-Dawely rats using the tail clip model and acetic acid induced writhing. Serum level of β-endorphin was assessed after the tail clip test. The anti-inflammatory activity was evaluated using acute and sub-chronic formalin induced paw edema. At the end of the sub-chronic formalin test, blood samples were collected for analysis of anti-inflammatory, liver and kidney function markers. Livers, kidneys and hind paws were also examined histopathologically.Results: Addition of neostigmine to selective or non-selective NSAIDs (celecoxib or diclofenac) causes an increased level of analgesia of NSAIDs with rapid onset of action and short duration, while causing potentiation of the anti-inflammatory effect of neostigmine as seen in the tail clip, writhing, formalin test, Cox-1 and Cox-2 activities, serum β-endorphin, TNF-α, NF-кB and HS-CRP. All combinations of this study disturb some kidney and liver functions, however with normal histopathological appearances, while hind paws reveal improved inflammatory infiltration in all treated groups. Conclusion: Selective and non-selective NSAIDs examined in this study could be good adjunct options to general anesthetic agents and neostigmine in perioperative stages, an outcome that needs further clinical investigations.


Author(s):  
Arunkumar J. ◽  
Vijayalakshmi M. ◽  
Yesodha S. ◽  
YousufAli A. S. ◽  
Parthiban R.

Background: The objective of the study was to evaluate anti-nociceptive effect of methanolic extract of Murraya koenigii leaves on thermal and mechanical pain in swiss albino mice.Methods: Thirty adult male swiss albino mice weighing 25-30 grams were selected and allocated in to five groups. Each group consists of six animals. The control group received vehicle (10 ml/kg), standard group received morphine (10 mg/kg) and test groups received dried methanolic extract of Murraya koenigii leaves (100 mg/kg, 200 mg/kg, 400 mg/kg per oral respectively) 1 hour before placing the animal over the hot plate at temperature of 55⁰C . A cut off period of 10 sec was observed to avoid damage of the paw. The response in the form of withdrawal of paws or licking of the paws. The delay in the reaction time denotes analgesic activity. The latency was recorded before and after 15, 30, 60, 120 minutes administration of drug. After washout period of 1 month the same group of animals were utilized to evaluate the analgesic effect by tail clip method for better comparison.Results: All the doses of Murraya koenigii leaves significantly delayed reaction time in hot plate method and tail clip method. The results were comparable to that produced by standard drug morphine.Conclusions: Murraya koenigii leaves has analgesic activity which was comparable to morphine.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 93-93
Author(s):  
Amelia R. Wilhelm ◽  
Nicole A. Parsons ◽  
Charles T. Esmon ◽  
Rodney M. Camire ◽  
Lindsey A. George

Activated factor VIII (FVIIIa) is an essential cofactor in the intrinsic tenase (Xase) enzyme complex that generates factor Xa and propagates clot formation. The FVIIIa heterotrimer is comprised of a metal ion linked dimer (A1/A3-C1-C2 domains) that is associated with the A2 domain by weak non-covalent interactions. Regulation of FXa formation by the intrinsic Xase enzyme complex occurs by FIXa inhibition and mechanisms contributing to FVIIIa inactivation, including: 1) rapid A2 domain dissociation and 2) activated protein C (APC) cleavage of FVIIIa. While FVIIIa inactivation by APC is considered important, there are surprisingly no in vivo studies documenting the hemostatic role of APC in FVIIIa regulation. Further, published data demonstrate APC cleavage of FVIIIa at physiologic protein concentrations occurs over hours while A2 dissociation occurs rapidly over minutes. Thus, it is thought that the predominant mechanism of FVIIIa inactivation is A2 dissociation and APC likely plays a marginal role in FVIIIa regulation. Additionally, unlike described A2 mutations that enhance dissociation and cause hemophilia A (HA), there is no known disease state attributed to altered FVIIIa cleavage by APC. This is in contrast to FVIII's homologous protein, FVa, whereby resistance to APC cleavage is the most common inherited thrombophilia (FV-Leiden [FVL]). Understanding the physiologically relevant mechanisms of FVIIIa inactivation has immediate clinical applicability for understanding safety considerations in HA therapeutics that bypass FVIIIa regulation (FVIII mimetic antibodies, e.g. emicizumab). Further, as evidenced by successful hemophilia B gene therapy trials using a gain of function FIX variant (FIX-Padua), altering FVIIIa inactivation could be exploited for therapeutic benefit in the setting of gene transfer. We aimed to determine the in vivo hemostatic role of APC in FVIIIa regulation and pair these studies with purified system analysis. We introduced Arg to Gln mutations at FVIII APC cleavage sites (R336Q and R562Q, herein called FVIII-QQ) on a B-domain deleted FVIII (FVIII-WT) backbone and produced recombinant FVIII-QQ and FVIII-WT. Unlike FVIII-WT, western blot analysis of FVIII-QQ incubated with APC and phospholipids had no evidence of cleavage. Enzyme kinetic studies using purified components demonstrated no appreciable difference in the Km or Vmax for FX within the intrinsic Xase enzyme complex or A2 dissociation of FVIII-QQ relative to FVIII-WT. These data confirmed no unexpected differences in FVIII-QQ relative to FVIII-WT. To begin to evaluate the role of APC in FVIIIa regulation, we measured thrombin generation in murine and human HA plasma reconstituted with FVIII-QQ or FVIII-WT in the presence of increasing APC concentrations. The IC50 of APC was 2-3-fold higher for FVIII-QQ than FVIII-WT. To evaluate the in vivo hemostatic effect of APC in FVIIIa regulation, HA mice were infused with FVIII-QQ or FVIII-WT and evaluated by tail clip injury and 7.5% FeCl3 carotid artery occlusion models. Required doses of FVIII-QQ to normalize blood loss from a tail clip assay and time to vessel occlusion in a FeCl3 assay were 4-5 fold lower than necessary FVIII-WT doses; the superior hemostatic effect of FVIII-QQ supported the physiologic significance of APC in FVIIIa inactivation. To isolate the role of APC in FVIIIa regulation from APC inactivation of FVa, we backcrossed HA mice with FVL mice to create homozygous HA/FVL mice. HA/FVL mice were infused with FVIII-QQ or FVIII-WT and underwent tail clip assay analysis. Doses of FVIII-QQ required to normalize blood loss were again less than FVIII-WT. To further isolate the enhanced hemostatic effect of FVIII-QQ to APC resistance, we performed the tail clip assay in HA/FVL mice infused with FVIII-QQ or FVIII-WT in the presence or absence of MPC1609, an antibody that blocks murine APC function (Xu et al. J Thromb Haemost 2008). In the presence of MPC1609, the same dose of FVIII-WT and FVIII-QQ was required to normalize blood loss (Figure 1). Collectively, our in vitro and in vivo data support the physiologic significance of APC in FVIIIa regulation. To our knowledge these data are the first to demonstrate the in vivo hemostatic effect of APC in FVIIIa inactivation. Our data may be translated to rationally exploit APC regulation of FVIIIa to develop novel HA therapeutics or further delineate safety considerations in therapies that bypass FVIIIa regulation. Figure 1 Disclosures Camire: Pfizer: Research Funding. George:University of Pennyslvania: Employment; Pfizer: Consultancy; Avrobio: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document