P34. Working memory for faces in congenital prosopagnosia: altered neural representations in the fusiform face area

2018 ◽  
Vol 129 (8) ◽  
pp. e80-e81
Author(s):  
A. Haeger ◽  
C. Pouzat ◽  
V. Luecken ◽  
K. N’Diaye ◽  
C.E. Elger ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Alexa Haeger ◽  
Christophe Pouzat ◽  
Volker Luecken ◽  
Karim N’Diaye ◽  
Christian Elger ◽  
...  

Rationale: Face expertise is a pivotal social skill. Developmental prosopagnosia (DP), i.e., the inability to recognize faces without a history of brain damage, affects about 2% of the general population, and is a renowned model system of the face-processing network. Within this network, the right Fusiform Face Area (FFA), is particularly involved in face identity processing and may therefore be a key element in DP. Neural representations within the FFA have been examined with Representational Similarity Analysis (RSA), a data-analytical framework in which multi-unit measures of brain activity are assessed with correlation analysis.Objectives: Our study intended to scrutinize modifications of FFA-activation during face encoding and maintenance based on RSA.Methods: Thirteen participants with DP (23–70 years) and 12 healthy control subjects (19–62 years) participated in a functional MRI study, including morphological MRI, a functional FFA-localizer and a modified Sternberg paradigm probing face memory encoding and maintenance. Memory maintenance of one, two, or four faces represented low, medium, and high memory load. We examined conventional activation differences in response to working memory load and applied RSA to compute individual correlation-matrices on the voxel level. Group correlation-matrices were compared via Donsker’s random walk analysis.Results: On the functional level, increased memory load entailed both a higher absolute FFA-activation level and a higher degree of correlation between activated voxels. Both aspects were deficient in DP. Interestingly, control participants showed a homogeneous degree of correlation for successful trials during the experiment. In DP-participants, correlation levels between FFA-voxels were significantly lower and were less sustained during the experiment. In behavioral terms, DP-participants performed poorer and had longer reaction times in relation to DP-severity. Furthermore, correlation levels were negatively correlated with reaction times for the most demanding high load condition.Conclusion: We suggest that participants with DP fail to generate robust and maintained neural representations in the FFA during face encoding and maintenance, in line with poorer task performance and prolonged reaction times. In DP, alterations of neural coding in the FFA might therefore explain curtailing in working memory and contribute to impaired long-term memory and mental imagery.


2003 ◽  
Vol 15 (6) ◽  
pp. 771-784 ◽  
Author(s):  
T. Jason Druzgal ◽  
Mark D'Esposito

Interactions between prefrontal cortex (PFC) and stimulusspecific visual cortical association areas are hypothesized to mediate visual working memory in behaving monkeys. To clarify the roles for homologous regions in humans, event-related fMRI was used to assess neural activity in PFC and fusiform face area (FFA) of subjects performing a delay-recognition task for faces. In both PFC and FFA, activity increased parametrically with memory load during encoding and maintenance of face stimuli, despite quantitative differences in the magnitude of activation. Moreover, timing differences in PFC and FFA activation during memory encoding and retrieval implied a context dependence in the flow of neural information. These results support existing neurophysiological models of visual working memory developed in the nonhuman primate.


2010 ◽  
Vol 50 (15) ◽  
pp. e1-e3 ◽  
Author(s):  
Xiaokun Xu ◽  
Xiaomin Yue ◽  
Mark D. Lescroart ◽  
Irving Biederman ◽  
Jiye G. Kim

2004 ◽  
Vol 16 (9) ◽  
pp. 1669-1679 ◽  
Author(s):  
Emily D. Grossman ◽  
Randolph Blake ◽  
Chai-Youn Kim

Individuals improve with practice on a variety of perceptual tasks, presumably reflecting plasticity in underlying neural mechanisms. We trained observers to discriminate biological motion from scrambled (nonbiological) motion and examined whether the resulting improvement in perceptual performance was accompanied by changes in activation within the posterior superior temporal sulcus and the fusiform “face area,” brain areas involved in perception of biological events. With daily practice, initially naive observers became more proficient at discriminating biological from scrambled animations embedded in an array of dynamic “noise” dots, with the extent of improvement varying among observers. Learning generalized to animations never seen before, indicating that observers had not simply memorized specific exemplars. In the same observers, neural activity prior to and following training was measured using functional magnetic resonance imaging. Neural activity within the posterior superior temporal sulcus and the fusiform “face area” reflected the participants' learning: BOLD signals were significantly larger after training in response both to animations experienced during training and to novel animations. The degree of learning was positively correlated with the amplitude changes in BOLD signals.


2009 ◽  
Vol 30 (4) ◽  
pp. 721-733 ◽  
Author(s):  
Gillian Rhodes ◽  
Patricia T. Michie ◽  
Matthew E. Hughes ◽  
Graham Byatt

Sign in / Sign up

Export Citation Format

Share Document