JAK2 V617F Mutation Status of 232 Patients Diagnosed With Chronic Myeloproliferative Neoplasms

2014 ◽  
Vol 14 (6) ◽  
pp. 525-533 ◽  
Author(s):  
Kadriye Bahriye Payzin ◽  
Kaan Savasoglu ◽  
Inci Alacacioglu ◽  
Fusun Ozdemirkiran ◽  
Belgin Berber Mutlu ◽  
...  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Murat Aksit ◽  
Giray Bozkaya ◽  
Nuriye Uzuncan ◽  
Sibel Bilgili ◽  
Can Ozlu ◽  
...  

AbstractObjectivesWe aimed to investigate the prevalence of JAK2-V617F mutation and its association with hematologic parameters in polycythemia vera(PV), essential thrombocytosis(ET) and primary myelofibrosis(PMF) patients who have been tested for the mutation.MethodsWe retrospectively reviewed the records of 168 patients (82 males and 86 females) who were tested for JAK2-V617F mutation upon request of Hematology Clinic. JAK2-V617F mutation status, white blood cell (WBC) counts, platelet (PLT) counts, hemoglobin (Hb), hematocrit (Hct) levels and demographics of the patients were recorded.ResultsJAK2-V617F mutation was detected in 55.9% of the 168 patients. The mutation was observed in 58.2% of PV cases, in 54.4% of ET and in 54.5% of PMF cases. All patients were divided into two groups: mutation positive and negative. Age, WBC and PLT levels were significantly higher in mutation positive group (p<0.05). Age, WBC, Hb, Hct and PLT counts in PV cases with JAK2-V617F mutation, age and WBC counts in PMF cases with JAK2-V617F mutation were found to be significantly higher compared to mutation negative patients (p<0.05).ConclusionJAK2-V617F mutation is a very important parameter in diagnostic and prognostic evaluation. Thus, every patient suspected of having a myeloproliferative neoplasm should be screened for JAK2-V617F mutation.


2016 ◽  
Vol 95 (5) ◽  
pp. 739-744 ◽  
Author(s):  
Miguel Waterhouse ◽  
Marie Follo ◽  
Dietmar Pfeifer ◽  
Nikolas von Bubnoff ◽  
Justus Duyster ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5400-5400
Author(s):  
Tatiana V Makarik ◽  
Adhamjon O Abdullaev ◽  
Sergei M. Kulikov ◽  
Elena E Nikulina ◽  
Svetlana A Treglazova ◽  
...  

Background. Ph-negative chronic myeloproliferative neoplasms (MPNs) are characterized by proliferation of one or more myeloid cell lineages and include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). Somatic Jak2, MPL and CALR gene mutations are responsible for more than 90% of NPM cases. These mutations affect sequential stages of prolipherative signal transduction and therefore after the emergence of one type of mutation another types basically should not have any selective advantages for clonal expansion. However, simultaneous findings of these mutations have been reported by different investigators in up to 10% of MPN cases. Aim. To evaluate frequencies of MPL and CALR mutations in Jak2 positive MPN cases for Russian cohort of patients. Methods. Archival DNA samples from MPN patients followed up at the National Research Center for Hematology between 2014 and 2019 included into retrospective study. DNAs and RNAs were extracted from blood using reagent kit from Interlabservice (Russia). Jak2 V617F mutation was quantified by real-time PCR kit from Syntol (Russia) according to manufacturers instructions. CALR exon 9 deletions/insertions were analyzed by fragment analysis (sensitivity >= 3%). MPL W515L/K mutations were assessed by in-house allele specific PCR. All cases were tested for phi-negativity using BCR-ABl p210 PCR kit from Interlabservice (Russia). Results. At least one of the mutations was found in 3863 cases. Jak2 V617F mutation - 3385 cases (87.6%); CALR insertion or deletion - 471 case (12.2%); MPLW515L/K mutation - 31 case (0.8%). We have found 28 cases (0.7%) with Jak2 and CALR mutations combined and 3 cases (0.1%) with Jak2 and MPL mutations in the cohort studied. Matched measures were obtained at least twice at different time points during the course of disease for these cases. No cases with simultaneous CALR and MPL mutations were detected. In 23 from 31 (74%) cases with combined mutations Jak2 V617F allele burden was lower than 3%. Among cases with combined mutations 5 were diagnosed with PV, 8 - with ET, 8 - with PMF and 10 with unclassified MPN. No correlations between diagnosis, mutation combination or allele burden were found. Conclusions. Based on the data, obtained on retrospective DNA samples we cannot state whether combined mutations are present in different clones of myeloid cells or in one. Indirectly, the fact that more often mutations in CALR and MPL genes were found in the cases with a low Jak2 V617F allele burden may indicate that additional mutations occur in the "competing" cell clone. Further prospective studies with mutation monitoring over the therapy are required to assess the value of combined mutations for MPN pathogenesis. Disclosures No relevant conflicts of interest to declare.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 247
Author(s):  
Miaomiao Chen ◽  
Chunhua Zhang ◽  
Zhiqing Hu ◽  
Zhuo Li ◽  
Menglin Li ◽  
...  

The JAK2 V617F mutation is a major diagnostic, therapeutic, and monitoring molecular target of Philadelphia-negative myeloproliferative neoplasms (MPNs). To date, numerous methods of detecting the JAK2 V617F mutation have been reported, but there is no gold-standard diagnostic method for clinical applications. Here, we developed and validated an efficient Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 12a (Cas12a)-based assay to detect the JAK2 V617F mutation. Our results showed that the sensitivity of the JAK2 V617F/Cas12a fluorescence detection system was as high as 0.01%, and the JAK2 V617F/Cas12a lateral flow strip assay could unambiguously detect as low as 0.5% of the JAK2 V617F mutation, which was much higher than the sensitivity required for clinical application. The minimum detectable concentration of genomic DNA achieved was 0.01 ng/μL (~5 aM, ~3 copies/μL). In addition, the whole process only took about 1.5 h, and the cost of an individual test was much lower than that of the current assays. Thus, our methods can be applied to detect the JAK2 V617F mutation, and they are highly sensitive, rapid, cost-effective, and convenient.


2019 ◽  
Vol 44 (4) ◽  
pp. 492-498
Author(s):  
Gonca Gulbay ◽  
Elif Yesilada ◽  
Mehmet Ali Erkurt ◽  
Harika Gozukara Bag ◽  
Irfan Kuku ◽  
...  

AbstractObjectiveDetection ofJAK2V617F in myeloproliferative neoplasms (MPNs) is very important in both diagnosis and disease progression. In our study, we investigated the frequency ofJAK2V617F mutation in patients with myeloproliferative disorders.MethodsWe retrospectively reviewed the records of 720 patients (174 females and 546 males) who were tested for JAK2 V617F mutation from January 2007 to December 2017.ResultsIn our patients were determined 22.6%JAK2V617F mutation. 33.3% in women, 19.2% in men have been positive forJAK2V617F mutation. In our studyJAK2V617F present in 48.6% of essential thrombocythemia, 80.5% of polycythemia rubra vera (PV), 47.5% of primary myelofibrosis, 10% of MPNs, unclassifiable, 0.8% of others. We also investigated the difference in hematological parameters [white blood cell, hemoglobin (Hb), hematocrit (HCT), red blood cell distribution widths (RDW) and platelets count (PLT)] betweenJAK2V617F positive andJAK2V617F negative patients.ConclusionsInvestigation of the JAK2 V617F mutation is very important in cases of MPNs. In our study JAK2 V617F mutation was higher in PV, essential thrombocythemia, and primary myelofibrosis patients. However, there were significant differences in Hb, HCT, RDW and PLT levels in mutation-positive patients.


Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3676-3682 ◽  
Author(s):  
Francesco Passamonti ◽  
Elisa Rumi ◽  
Daniela Pietra ◽  
Matteo G. Della Porta ◽  
Emanuela Boveri ◽  
...  

We studied the relationship between granulocyte JAK2 (V617F) mutation status, circulating CD34+ cells, and granulocyte activation in myeloproliferative disorders. Quantitative allele-specific polymerase chain reaction (PCR) showed significant differences between various disorders with respect to either the proportion of positive patients (53%-100%) or that of mutant alleles, which overall ranged from 1% to 100%. In polycythemia vera, JAK2 (V617F) was detected in 23 of 25 subjects at diagnosis and in 16 of 16 patients whose disease had evolved into myelofibrosis; median percentages of mutant alleles in these subgroups were significantly different (32% versus 95%, P < .001). Circulating CD34+ cell counts were variably elevated and associated with disease category and JAK2 (V617F) mutation status. Most patients had granulocyte activation patterns similar to those induced by administration of granulocyte colony-stimulating factor. A JAK2 (V617F) gene dosage effect on both CD34+ cell counts and granulocyte activation was clearly demonstrated in polycythemia vera, where abnormal patterns were mainly found in patients carrying more than 50% mutant alleles. These observations suggest that JAK2 (V617F) may constitutively activate granulocytes and by this means mobilize CD34+ cells. This exemplifies a novel paradigm in which a somatic gain-of-function mutation is initially responsible for clonal expansion of hematopoietic cells and later for their abnormal trafficking via an activated cell progeny.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3503-3503
Author(s):  
Ruben A. Mesa ◽  
Ayalew Tefferi ◽  
Heather Powell ◽  
Terra Lasho ◽  
David Loegering ◽  
...  

Abstract Background: We have previously described a resistance to the normal process of apoptosis in neutrophils of patients with myelofibrosis with myeloid metaplasia (MMM) (Blood2003;102:11). Most recently, an activating mutation of JAK2 (V617F) has been described in approximately half of the patients with MMM as well as in variable proportion of patients with other myeloproliferative disorders (MPD). In the current study, we investigated the correlation between JAK2 V617F mutation status and neutrophil apoptosis in MMM. Methods: Neutrophils were isolated by density centrifugation from patients with MMM, other MPDs, and normal controls and assessed for apoptosis at baseline and after 24 hours in culture (IMDM with 20% sterilized fetal calf serum to simulate spontaneous apoptosis). Apoptosis was quantified using three-color flow cytometry using CD45 (to confirm leukocyte presence), annexin V (AN) (marker of apoptosis; detects aberrant externalization of phosphatidylserine during apoptosis), and propidium iodide (PI) (marker of dead cells). Mutation analysis for JAK2 V617F was performed in DNA derived from the isolated neutrophils using genomic DNA amplified by PCR, or extracted from cytogenetic pellets in archived specimens. Apoptotic rates after 24 hours in culture were correlated between patients and controls for both JAK2 mutation status and clinical parameters. Immunoblotting was performed on a subset of patients for correlation of JAK2 mutation status and downstream phosphorylation of the JAK2 target, STAT3, which transcriptionally activates several antiapoptotic genes. Results: Spontaneous neutrophil apoptosis was significantly decreased in MMM patients (n=50; median % apoptotic cells at 41%) compared to both healthy volunteers (n=9; 66%) and patients with other MPD (n=11; 53%) (p=0.002). Resistance to apoptosis in MMM correlated with both anemia (p=0.01) and the presence of the JAK2 V617F mutation (p=0.01). Furthermore, the specific abnormality was more pronounced in patients with homozygous JAK2 V617F; median % apoptotic cells of 47% for patients with wild-type allele (n=22) vs. 39% for heterozygotes (n=23) vs. 22% for homozygotes (n=5; p=0.008). The JAK2 mutation status did not appear dependent on other peripheral blood or clinical features. Neutrophils from 14 MMM patients were assessed simultaneously for both JAK2 mutation and STAT3 phosphorylation status by immunoblotting. Strong expression of phosphorylation of STAT3 was seen in all 3 homozygotes and 4 of 5 heterozygotes, but only 1 of 6 with wild-type allele (p=0.026). Conclusions: Impaired neutrophil apoptosis in patients with MMM correlates with the functional presence of JAK2 V617F in an allele-dose dependent manner and STAT3 phosphorylation. The current observation supports a pathogenetic role for the specific mutation in sustaining clonal myeloproliferation.


Sign in / Sign up

Export Citation Format

Share Document