A consistent finite element approach for dynamic crack propagation with explicit time integration

2021 ◽  
Vol 376 ◽  
pp. 113652
Author(s):  
Milad Bybordiani ◽  
Daniel Dias-da-Costa
Author(s):  
B. Prabel ◽  
S. Marie ◽  
A. Combescure

In the frame of analysis of the pressure thermal shock in a PWR RVP and the associated R&D activities, some developments are performed at CEA on the dynamic brittle propagation and crack arrest. This paper presents a PhD work on the modeling of the dynamic brittle crack growth. For the analyses, an important experimental work is performed on different geometries using a French RPV ferritic steel: Compact Tension specimens with different thickness, isothermal rings under compression with different positions of the initial defect to study a mixed mode configuration, and a ring submitted to thermal shock. The first part of this paper details the test conditions and main results. To propose an accurate interpretation of the crack growth, a viscous-elastic-plastic dynamic model is used. The strain rate influence is taken into account based on Cowper-Symond’s law (characterization was made from Split Hopkinson Pressure Bar tests). To model the crack propagation in the Finite Element calculation, eXtended Finite Element Method (X-FEM) is used. The implementation of these specific elements in the CEA F.E. software CAST3M is described in the second part of this paper. This numerical technique avoids re-meshing, because the crack progress is directly incorporated in the degrees of freedom of the elements crossed by the crack. The last part of this paper compares the F.E. predictions to the experimental measurements using different criteria. In particular, we focused on a RKR (Ritchie-Knott-Rice) like criterion using a critical principal stress in the front of the crack tip during the dynamic crack extension. Critical stress is found to depend on crack speed, or equivalently on strain rate. Good results are reported concerning predictive simulations.


2020 ◽  
Vol 366 ◽  
pp. 113091
Author(s):  
Kota Kishi ◽  
Yuuki Takeoka ◽  
Tsutomu Fukui ◽  
Toshiyuki Matsumoto ◽  
Katsuyuki Suzuki ◽  
...  

2004 ◽  
Vol 01 (01) ◽  
pp. 1-15 ◽  
Author(s):  
TED BELYTSCHKO ◽  
HAO CHEN

An enrichment technique for accurately modeling two dimensional crack propagation within the framework of the finite element method is presented. The technique uses an enriched basis that spans the asymptotic dynamic crack-tip solution. The enrichment functions and their spatial derivatives are able to exactly reproduce the asymptotic displacement field and strain field for a moving crack. The stress intensity factors for Mode I and Mode II are taken as additional degrees of freedom. An explicit time integration scheme is used to solve the resulting discrete equations. Numerical simulations of linear elastodynamic problems are reported to demonstrate the accuracy and potential of the technique.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750024 ◽  
Author(s):  
Wooram Kim ◽  
J. N. Reddy

A time collocation finite element approach is employed to develop one- and two-step time integration schemes with algorithmic dissipation control capability. The newly developed time integration schemes are combined to obtain a new family of time integration algorithms using the concept employed by Baig and Bathe. The newly developed algorithm can effectively control the algorithmic dissipation by relating the collocation parameters with the spectral radius in the high frequency limit. The new algorithm provides better accuracy compared with the generalized-[Formula: see text] method for highly dissipative cases and includes the Baig and Bathe method within its family as a special case.


Sign in / Sign up

Export Citation Format

Share Document