scholarly journals Modeling multi-fracturing fibers in fiber networks using elastoplastic Timoshenko beam finite elements with embedded strong discontinuities — Formulation and staggered algorithm

2021 ◽  
Vol 384 ◽  
pp. 113964
Author(s):  
Vedad Tojaga ◽  
Artem Kulachenko ◽  
Sören Östlund ◽  
T. Christian Gasser
PAMM ◽  
2010 ◽  
Vol 10 (1) ◽  
pp. 681-684 ◽  
Author(s):  
Arun Raina ◽  
Christian Linder

Author(s):  
Vishnu Prasad Venugopal ◽  
Gang Wang

Embedded smart actuators/sensors, such as piezoelectric types, have been used to conduct wave transmission and reception, pulse-echo, pitch-catch, and phased array functions in order to achieve in-situ nondestructive evaluation for different structures. By comparing to baseline signatures, the damage location, amount, and type can be determined. Typically, this methodology does not require analytical structural models and interrogation algorithm is carefully designed with little wave propagation knowledge of the structure. However, the wave excitation frequency, waveform, and other signal characteristics must be comprehensively considered to effectively conduct diagnosis of incipient forms of damage. Accurate prediction of high frequency wave response requires a prohibitively large number of conventional finite elements in the structural model. A new high fidelity approach is needed to capture high frequency wave propagations in a structure. In this paper, a spectral finite element method (SFEM) is proposed to characterize wave propagations in a beam structure under piezoelectric material (i.e., PZT) actuation/sensing. Mathematical models are developed to account for both Uni-morph and bi-morph configurations, in which PZT layers are modeled as either an actuator or a sensor. The Timoshenko beam theory is adopted to accommodate high frequency wave propagations, i.e., 20–200 KHz. The PZT layer is modeled as a Timoshenko beam as well. Corresponding displacement compatibility conditions are applied at interfaces. Finally, a set of fully coupled governing equations and associated boundary conditions are obtained when applying the Hamilton’s principle. These electro-mechanical coupled equations are solved in the frequency domain. Then, analytical solutions are used to formulate the spectral finite element model. Very few spectral finite elements are required to accurately capture the wave propagation in the beam because the shape functions are duplicated from exact solutions. Both symmetric and antisymmetric mode of lamb waves can be generated using bimorph or uni-morph actuation. Comprehensive simulations are conducted to determine the beam wave propagation responses. It is shown that the PZT sensor can pick up the reflected waves from beam boundaries and damages. Parametric studies are conducted as well to determine the optimal actuation frequency and sensor sensitivity. Such information helps us to fundamentally understand wave propagations in a beam structure under PZT actuation and sensing. Our SFEM predictions are validated by the results in the literature.


2003 ◽  
Vol 2003.12 (0) ◽  
pp. 345-348
Author(s):  
Kazuhiro KORO ◽  
Kazuhisa ABE ◽  
Makoto ISHIDA ◽  
Takahiro Suzuki

AIAA Journal ◽  
1988 ◽  
Vol 26 (11) ◽  
pp. 1378-1386 ◽  
Author(s):  
G. R. Heppler ◽  
J. S. Hansen

2011 ◽  
Vol 2011 ◽  
pp. 1-21
Author(s):  
Carmelo di Castri ◽  
Arcangelo Messina

Timoshenko's theory is adopted in order to accurately describe the freely vibrating dynamics of a multilink flexible manipulator. It is herein presented an analytical modelling strategy that extends previous works through a more refined model which accounts for elastic complicating effects along with lumped inertial loads which are typically mounted on joints of manipulators; in this regard, more accurate results are provided. The eigenproblem is presented from an analytical point of view through a matrix formulation, thus providing an essentially closed formula. Apart from the limitations of the implementing calculator, the formulation can take into account an arbitrary number of links in an arbitrary settled configuration, thus allowing relevant analytical analysis and avoiding the need to recur to nonimmediate numerical schemes. Once the analytical model is introduced, solutions are compared to both those achieved by previous models and those obtained by a finite elements method.


2003 ◽  
Vol 56 (14) ◽  
pp. 2135-2161 ◽  
Author(s):  
J. Oliver ◽  
A. E. Huespe ◽  
E. Samaniego

Sign in / Sign up

Export Citation Format

Share Document