Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting
Latest Publications


TOTAL DOCUMENTS

100
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791856048

Author(s):  
Andres F. Arrieta ◽  
Tommaso Delpero ◽  
Paolo Ermanni

Vibration based energy harvesting has received extensive attention in the engineering community for the past decade thanks to its potential for autonomous powering small electronic devices. For this purpose, linear electromechanical devices converting mechanical to useful electrical energy have been extensively investigated. Such systems operate optimally when excited close to or at resonance, however, for these lightly damped structures small variations in the ambient vibration frequency results in a rapid reduction of performance. The idea to use nonlinearity to obtain large amplitude response in a wider frequency range, has shown the potential for achieving so called broadband energy harvesting. An interesting type of nonlinear structures exhibiting the desired broadband response characteristics are bi-stable composites. The bi-stable nature of these composites allows for designing several ranges of wide band large amplitude oscillations, from which high power can be harvested. In this paper, an analytical electromechanical model of cantilevered piezoelectric bi-stable composites for broadband harvesting is presented. The model allows to calculate the modal characteristics, such as natural frequencies and mode shapes, providing a tool for the design of bi-stable composites as harvesting devices. The generalised coupling coefficient is used to select the positioning of piezoelectric elements on the composites for maximising the conversion energy. The modal response of a test specimen is obtained and compared to theoretical results showing good agreement, thus validating the model.


Author(s):  
Robert G. Northcutt ◽  
Vishnu-Baba Sundaresan

Recent studies of polypyrrole (PPy) electrodes have been increasing the interfacial surface area in order to increase electrochemical performance. We present a novel method of electropolymerizing PPy doped with dodecylbenzenesulfonate (DBS) referred to as biotemplating. A biotemplated conducting polymer utilizes phospholipid vesicles in order to form a three dimensional structure with a sponge-like shape. The vesicles, measuring 1–2 μm in diameter, are added in situ with the polymerization solution. They become enveloped while maintaining their structure during electropolymerization of PPy(DBS). The result of this structure is a significant increase in surface area compared to current techniques. There are several advantages in using biotemplated conducting polymers as battery electrodes. Compared to a planar PPy(DBS) membrane, biotemplated PPy(DBS) membranes have a roughly 50% increased storage capacity. There is an expected reduction in volumetric expansion during ion ingress/egress into the polymer backbone. This reduction would result in decreased fatigue loading and improving cyclability. Further, biotemplated PPy(DBS) membranes can be fabricated into thin structures with increased flexibility, allowing them to be rolled into various packaging sizes. In this article, the charge density of a biotemplated PPy(DBS) membrane as a function of charging and discharging currents is compared to a planar PPy(DBS) membrane. The structural enhancement offers systemic advantages by providing higher volumetric energy density and decreased fatigue loading for applications involving conducting polymer electrodes.


Author(s):  
Vishnu Prasad Venugopal ◽  
Gang Wang

Embedded smart actuators/sensors, such as piezoelectric types, have been used to conduct wave transmission and reception, pulse-echo, pitch-catch, and phased array functions in order to achieve in-situ nondestructive evaluation for different structures. By comparing to baseline signatures, the damage location, amount, and type can be determined. Typically, this methodology does not require analytical structural models and interrogation algorithm is carefully designed with little wave propagation knowledge of the structure. However, the wave excitation frequency, waveform, and other signal characteristics must be comprehensively considered to effectively conduct diagnosis of incipient forms of damage. Accurate prediction of high frequency wave response requires a prohibitively large number of conventional finite elements in the structural model. A new high fidelity approach is needed to capture high frequency wave propagations in a structure. In this paper, a spectral finite element method (SFEM) is proposed to characterize wave propagations in a beam structure under piezoelectric material (i.e., PZT) actuation/sensing. Mathematical models are developed to account for both Uni-morph and bi-morph configurations, in which PZT layers are modeled as either an actuator or a sensor. The Timoshenko beam theory is adopted to accommodate high frequency wave propagations, i.e., 20–200 KHz. The PZT layer is modeled as a Timoshenko beam as well. Corresponding displacement compatibility conditions are applied at interfaces. Finally, a set of fully coupled governing equations and associated boundary conditions are obtained when applying the Hamilton’s principle. These electro-mechanical coupled equations are solved in the frequency domain. Then, analytical solutions are used to formulate the spectral finite element model. Very few spectral finite elements are required to accurately capture the wave propagation in the beam because the shape functions are duplicated from exact solutions. Both symmetric and antisymmetric mode of lamb waves can be generated using bimorph or uni-morph actuation. Comprehensive simulations are conducted to determine the beam wave propagation responses. It is shown that the PZT sensor can pick up the reflected waves from beam boundaries and damages. Parametric studies are conducted as well to determine the optimal actuation frequency and sensor sensitivity. Such information helps us to fundamentally understand wave propagations in a beam structure under PZT actuation and sensing. Our SFEM predictions are validated by the results in the literature.


Author(s):  
Guru Venkatesan ◽  
Andy Sarles

Droplet-based biomolecular arrays form the basis for a new class of bioinspired material system, whereby decreasing the sizes of the droplets and increasing the number of droplets can lead to higher functional density for the array. In this paper, we report on a non-microfluidic approach to form and connect nanoliter-to-femtoliter, lipid-coated aqueous droplets in oil to form micro-droplet interface bilayers (μDIBs). Two different modes of operation are reported for dispensing a wide range of droplet sizes (2–200μm radius). Due to the high surface-area-to-volume ratios of microdroplets at these length scales, droplet shrinking is prominent, which affects the stability and lifetime of the bilayer. To better quantify these effects, we measure the shrinkage rates for 8 different water droplet/oil compositions and study the effect of lipid placement and lipid type on morphological changes to μDIBs.


Author(s):  
M. Nouh ◽  
O. Aldraihem ◽  
A. Baz

Conventional Thermoacoustic-Piezoelectric (TAP) energy harvesters convert thermal energy, such as solar or waste heat energy, directly into electrical energy without the need for any moving components. The input thermal energy generates a steep temperature gradient along a porous medium. At a critical threshold of the temperature gradient, self-sustained acoustic waves are developed inside an acoustic resonator. The associated pressure fluctuations impinge on a piezoelectric diaphragm, placed at the end of the resonator. The reverse phenomenon results in piezo-driven thermoacoustic refrigerators (PDTARs). A pressure wave driven by a piezo-speaker induces a temperature gradient across the porous body. In this study, the TAP harvester and the PDTAR are coupled with auxiliary elastic structures in the form of simple spring-mass systems to enhance their performance. The proposed addition is referred to as a dynamic magnifier and has been shown in different areas to amplify significantly the deflection of vibrating structures. A comprehensive model of the dynamically magnified thermoacoustic-piezoelectric (DMTAP) system has been developed earlier that includes equations of motions of the system’s mechanical components, the harvested voltage, the mechanical impedance of the coupled structure at the resonator end as well as the equations necessary to compute the self-excited frequencies of oscillations inside the acoustic resonator. Theoretical results confirmed significant amplification of the harvested power is feasible if the magnifier’s parameters are properly chosen. The performance of experimental prototypes of a DMTAP harvester and a PDTAR with a dynamic magnifier are examined here. The obtained experimental findings are validated against the theoretical results. Dynamic magnifiers serve as a novel approach to enhance the effectiveness of thermoacoustic energy harvesting and refrigeration.


Author(s):  
Nalin Verma ◽  
Kenneth A. Cunefare ◽  
Ellen Skow ◽  
Alper Erturk

A hydraulic pressure energy harvester (HPEH) device, which utilizes a housing to isolate a piezoelectric stack from the hydraulic fluid via a mechanical interface, generates power by converting the dynamic pressure within the system into electricity. Prior work developed an HPEH device capable of generating 2187 microWatts from an 85 kPa pressure ripple amplitude using a 1387 mm3 stack. A new generation of HPEH produced 157 microWatts at the test conditions of 18 MPa static pressure and 394 kPa root-mean-square pressure amplitude using a 50 mm3 stack, thus increasing the power produced per volume of piezoelectric stack principally due to the higher dynamic pressure input. The stack and housing design implemented on this new prototype device yield a compact, high-pressure hydraulic pressure energy harvester designed to withstand 35 MPa. The device, which is less than a 2.54 cm in length as compared to a 5.3 cm length of a previous HPEH, was statically tested up to 21.9 MPa and dynamically tested up to 19 MPa with 400 kPa root-mean-square dynamic pressure amplitude. An inductor was included in the load circuit in parallel with the stack and the load resistance to increase the power output of the device. A previously developed electromechanical power output model for this device that predicts the power output given the dynamic pressure ripple amplitude is compared to the power results. The power extracted from this device would be sufficient to meet the proposed applications of the device, which is to power sensor nodes in hydraulic systems.


Author(s):  
Thomas E. Pillsbury ◽  
Ryan M. Robinson ◽  
Norman M. Wereley

Pneumatic artificial muscles (PAMs) are used in robotics applications for their light-weight design and superior static performance. Additional PAM benefits are high specific work, high force density, simple design, and long fatigue life. Previous use of PAMs in robotics research has focused on using “large,” full-scale PAMs as actuators. Large PAMs work well for applications with large working volumes that require high force and torque outputs, such as robotic arms. However, in the case of a compact robotic hand, a large number of degrees of freedom are required. A human hand has 35 muscles, so for similar functionality, a robot hand needs a similar number of actuators that must fit in a small volume. Therefore, using full scale PAMs to actuate a robot hand requires a large volume which for robotics and prosthetics applications is not feasible, and smaller actuators, such as miniature PAMs, must be used. In order to develop a miniature PAM capable of producing the forces and contractions needed in a robotic hand, different braid and bladder material combinations were characterized to determine the load stroke profiles. Through this characterization, miniature PAMs were shown to have comparably high force density with the benefit of reduced actuator volume when compared to full scale PAMs. Testing also showed that braid-bladder interactions have an important effect at this scale, which cannot be modeled sufficiently using existing methods without resorting to a higher-order constitutive relationship. Due to the model inaccuracies and the limited selection of commercially available materials at this scale, custom molded bladders were created. PAMs created with these thin, soft bladders exhibited greatly improved performance.


Author(s):  
Shuang Wang ◽  
John C. Brigham

This work presents a strategy to identify the optimal localized activation and actuation for a morphing thermally activated SMP structure or structural component to obtain a targeted shape change or set of shape features, subject to design objectives such as minimal total required energy and time. This strategy combines numerical representations of the SMP structure’s thermo-mechanical behavior subject to activation and actuation with gradient-based nonlinear optimization methods to solve the morphing inverse problem that includes minimizing cost functions which address thermal and mechanical energy, morphing time, and damage. In particular, the optimization strategy utilizes the adjoint method to efficiently compute the gradient of the objective functional(s) with respect to the design parameters for this coupled thermo-mechanical problem.


Author(s):  
Chin-Hsiung Loh ◽  
Min-Hsuan Tseng ◽  
Shu-Hsien Chao

One of the important issues to conduct the damage detection of a structure using vibration-based damage detection (VBDD) is not only to detect the damage but also to locate and quantify the damage. In this paper a systematic way of damage assessment, including identification of damage location and damage quantification, is proposed by using output-only measurement. Four level of damage identification algorithms are proposed. First, to identify the damage occurrence, null-space and subspace damage index are used. The eigenvalue difference ratio is also discussed for detecting the damage. Second, to locate the damage, the change of mode shape slope ratio and the prediction error from response using singular spectrum analysis are used. Finally, to quantify the damage the RSSI-COV algorithm is used to identify the change of dynamic characteristics together with the model updating technique, the loss of stiffness can be identified. Experimental data collected from the bridge foundation scouring in hydraulic lab was used to demonstrate the applicability of the proposed methods. The computation efficiency of each method is also discussed so as to accommodate the online damage detection.


Author(s):  
Rigoberto Burgueño ◽  
Nan Hu ◽  
Nizar Lajnef

Elastic instability, long considered mainly as a failure limit state or a safety guard against ultimate failure is gaining increased interest due to the development of active and controllable structures, and the growth in computational power. Mode jumping, or snap-through, during the postbuckling response leads to sudden and high-rate deformations due to generally smaller changes in the controlling load or displacement input to the system. A paradigm shift is thus emerging in using the unstable response range of slender structures for purposes that are rapidly increasing and diversifying, including applications such as energy harvesting, frequency tuning, sensing and actuation. This paper presents a finite element based numerical study on controlling the postbuckling behavior of fiber reinforced polymer cylindrical shells under axial compression. Considered variables in the numerical analyses include: the ply orientation and laminate stacking sequence; the material distribution on the shell surface (stiffness distribution); and the anisotropic coupling effects. Preliminary results suggest that the static and dynamic response of unstable mode branch switching during postbuckling can be fully characterized, and that their number and occurrence can be potentially tailored. Use of the observed behavior for energy harvesting and other sensing and actuation applications will be presented in future studies.


Sign in / Sign up

Export Citation Format

Share Document