A shock-capturing scheme with a novel limiter for compressible flows solved by smoothed particle hydrodynamics

2021 ◽  
Vol 386 ◽  
pp. 114082
Author(s):  
Zi-Fei Meng ◽  
A-Man Zhang ◽  
Ping-Ping Wang ◽  
Fu-Ren Ming
Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2858 ◽  
Author(s):  
Abdelkader Krimi ◽  
Luis Ramírez ◽  
Sofiane Khelladi ◽  
Fermín Navarrina ◽  
Michael Deligant ◽  
...  

In this work we present a δ-Smoothed Particle Hydrodynamics (SPH) scheme for weakly compressible flows with automatic adaptive numerical dissipation. The resulting scheme is a meshless self-adaptive method, in which the introduced artificial dissipation is designed to increase the dissipation in zones where the flow is under-resolved by the numerical scheme, and to decrease it where dissipation is not required. The accuracy and robustness of the proposed methodology is tested by solving several numerical examples. Using the proposed scheme, we are able to recover the theoretical decay of kinetic energy, even where the flow is under-resolved in very coarse particle discretizations. Moreover, compared with the original δ-SPH scheme, the proposed method reduces the number of problem-dependent parameters.


Author(s):  
S. M. FROLOV ◽  
◽  
V. S. IVANOV ◽  
Vas. S. IVANOV ◽  
R. R. TUKHVATULLINA ◽  
...  

At present, when solving problems of hydrodynamics of viscous incompressible and compressible flows in conditions of complex geometry with moving elements, preference is often given to meshless numerical algorithms based on the Smoothed Particle Hydrodynamics (SPH). We have developed our own parallel SPH algorithm that uses graphic processors to solve various problems with very narrow slits, rotating and contacting disks, free surfaces, etc., which are difficult to attack by conventional mesh-based (e. g., finite volume (FV)) methods. To check the algorithm, we solved the problems: (i) on the steady-state temperature distribution inside the cylinder head of a piston engine; (ii) on the torque of a gear box with rotating gearwheels partially immersed in engine oil; and (iii) on the steady-state gas velocity field during purging of the piston engine cylinder with air.


2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-427-Pr9-432
Author(s):  
P. Galon ◽  
H. Bung ◽  
M. Lepareux ◽  
T. Grünenwald

2008 ◽  
Vol 96 (6) ◽  
pp. 263-268 ◽  
Author(s):  
E. Mounif ◽  
V. Bellenger ◽  
A. Ammar ◽  
R. Ata ◽  
P. Mazabraud ◽  
...  

2020 ◽  
Vol 59 (40) ◽  
pp. 18236-18246
Author(s):  
Tianwen Dong ◽  
Yadong He ◽  
Jianchun Wu ◽  
Shiyu Jiang ◽  
Xingyuan Huang ◽  
...  

Author(s):  
Steven J. Lind ◽  
Benedict D. Rogers ◽  
Peter K. Stansby

This paper presents a review of the progress of smoothed particle hydrodynamics (SPH) towards high-order converged simulations. As a mesh-free Lagrangian method suitable for complex flows with interfaces and multiple phases, SPH has developed considerably in the past decade. While original applications were in astrophysics, early engineering applications showed the versatility and robustness of the method without emphasis on accuracy and convergence. The early method was of weakly compressible form resulting in noisy pressures due to spurious pressure waves. This was effectively removed in the incompressible (divergence-free) form which followed; since then the weakly compressible form has been advanced, reducing pressure noise. Now numerical convergence studies are standard. While the method is computationally demanding on conventional processors, it is well suited to parallel processing on massively parallel computing and graphics processing units. Applications are diverse and encompass wave–structure interaction, geophysical flows due to landslides, nuclear sludge flows, welding, gearbox flows and many others. In the state of the art, convergence is typically between the first- and second-order theoretical limits. Recent advances are improving convergence to fourth order (and higher) and these will also be outlined. This can be necessary to resolve multi-scale aspects of turbulent flow.


Sign in / Sign up

Export Citation Format

Share Document