scholarly journals A modified rate-dependent peridynamic model with rotation effect for dynamic mechanical behavior of ceramic materials

2022 ◽  
Vol 388 ◽  
pp. 114246
Author(s):  
Yaxun Liu ◽  
Lisheng Liu ◽  
Hai Mei ◽  
Qiwen Liu ◽  
Xin Lai
Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 854 ◽  
Author(s):  
Dayong Hu ◽  
Linwei Dang ◽  
Chong Zhang ◽  
Zhiqiang Zhang

Flax fiber-reinforced composites (FFRCs) exhibit excellent environmentally friendly qualities, such as light weight, low cost, recyclability, and excellent mechanical properties. Understanding the dynamic mechanical behavior of FFRCs could broaden their potential applications in lightweight, crashworthy, and impact-critical structures. This study presents a study on the fabrication of FFRCs by vacuum-assisted resin infusion. The dynamic stress–strain responses of the fabricated specimens at strain rates ranging from 0.006 s-1 to 2200 s-1 were evaluated using quasi-static tests and the Split–Hopkinson pressure bar (SHPB). The results indicated that the FFRC exhibited superior strain rate sensitivity. Final deformation photographs and scanning electron micrographs clearly revealed the damage evolution of the FFRC specimens, as well as various failure mechanisms, including fiber–matrix debonding, fiber pull-out, and fiber fracture at different strain rates. On the basis of the experimental results, a simplified Johnson–Cook model was established to describe the strain-rate dependent constitutive model of FFRC. The validation of the suggested constitutive model was embedded in the finite element simulations and could well repeat the strain wave observed from the experiment results. Finally, the quasi-static compression and drop-hammer impact of pyramidal lattice structures with FFRC cores were investigated both numerically and experimentally, proving the effectiveness of the simplified Johnson–Cook model. This study could potentially contribute to a deeper understanding of the dynamic mechanical behavior of FFRCs and provide fundamental experimental data for future engineering applications.


Author(s):  
Arun Prasath Kanagaraj ◽  
Amuthakkannan Pandian ◽  
Veerasimman Arumugaprabu ◽  
Rajendran Deepak Joel Johnson ◽  
Vigneswaran Shanmugam ◽  
...  

1991 ◽  
Vol 42 (6) ◽  
pp. 1647-1657 ◽  
Author(s):  
J. L. Gómez Ribelles ◽  
J. Mañó Sebastià ◽  
R. Martí Soler ◽  
M. Monleón Pradas ◽  
A. Ribes Greus ◽  
...  

2011 ◽  
Vol 28 (1) ◽  
pp. 201-210 ◽  
Author(s):  
Yun-Liang Li ◽  
Ming-Yu Lu ◽  
Hui-Feng Tan ◽  
Yi-Qiu Tan

1963 ◽  
Vol 36 (2) ◽  
pp. 407-421 ◽  
Author(s):  
Glenn E. Warnaka

Abstract Many common elastomeric materials have two ranges of dynamic-mechanical behavior. Such materials behave as viscoelastomers at very small strains and as plastoelastomers at strains of practical engineering interest. The change from viscoelastic to plastoelastic behavior occurs at dynamic strain amplitudes of 0.001 inches per inch to 0.005 inches per inch. In the plastoelastic range, the dynamic elastic modulus decreases with increasing dynamic strain amplitude. Loss factor reaches a maximum in the plastoelastic range.


Sign in / Sign up

Export Citation Format

Share Document