Detection of peripherally inserted central catheter (PICC) in chest X-ray images: A multi-task deep learning model

2020 ◽  
Vol 197 ◽  
pp. 105674
Author(s):  
Dingding Yu ◽  
Kaijie Zhang ◽  
Lingyan Huang ◽  
Bonan Zhao ◽  
Xiaoshan Zhang ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Nishimori ◽  
Kunihiko Kiuchi ◽  
Kunihiro Nishimura ◽  
Kengo Kusano ◽  
Akihiro Yoshida ◽  
...  

AbstractCardiac accessory pathways (APs) in Wolff–Parkinson–White (WPW) syndrome are conventionally diagnosed with decision tree algorithms; however, there are problems with clinical usage. We assessed the efficacy of the artificial intelligence model using electrocardiography (ECG) and chest X-rays to identify the location of APs. We retrospectively used ECG and chest X-rays to analyse 206 patients with WPW syndrome. Each AP location was defined by an electrophysiological study and divided into four classifications. We developed a deep learning model to classify AP locations and compared the accuracy with that of conventional algorithms. Moreover, 1519 chest X-ray samples from other datasets were used for prior learning, and the combined chest X-ray image and ECG data were put into the previous model to evaluate whether the accuracy improved. The convolutional neural network (CNN) model using ECG data was significantly more accurate than the conventional tree algorithm. In the multimodal model, which implemented input from the combined ECG and chest X-ray data, the accuracy was significantly improved. Deep learning with a combination of ECG and chest X-ray data could effectively identify the AP location, which may be a novel deep learning model for a multimodal model.


Automatika ◽  
2021 ◽  
Vol 62 (3-4) ◽  
pp. 397-406
Author(s):  
Mohammad Farukh Hashmi ◽  
Satyarth Katiyar ◽  
Abdul Wahab Hashmi ◽  
Avinash G. Keskar

Author(s):  
Jonathan Stubblefield ◽  
Mitchell Hervert ◽  
Jason Causey ◽  
Jake Qualls ◽  
Wei Dong ◽  
...  

AbstractOne of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We evaluated ER patient classification for cardiac and infection causes with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. We also conducted clinical feature importance analysis and identified the most important clinical features for ER patient classification. This model can be upgraded to include a SARS-CoV-2 specific classification with COVID-19 patients data. The current model is publicly available with an interface at the web link: http://nbttranslationalresearch.org/.Data statementThe clinical data and chest x-ray image data for this study were collected and prepared by the residents and researchers of the Joint Translational Research Lab of Arkansas State University (A-State) and St. Bernards Medical Center (SBMC) Internal Medicine Residency Program. As data collection is on-going for the project stage-II of clinical testing, raw data is not currently available for data sharing to the public.EthicsThis study was approved by the St. Bernards Medical Center’s Institutional Review Board (IRB).


2021 ◽  
Author(s):  
Ritika Nandi ◽  
Manjunath Mulimani

Abstract In this paper, a hybrid deep learning model is proposed for the detection of coronavirus from chest X-ray images. The hybrid deep learning model is a combination of ResNet50 and MobileNet. Both ResNet50 and MobileNet are light Deep Neural Networks (DNNs) and can be used with low hardware resource-based Personal Digital Assistants (PDA) for quick detection of COVID-19 infection. The performance of the proposed hybrid model is evaluated on two publicly available COVID-19 chest X-ray datasets. Both datasets include normal, pneumonia and coronavirus infected chest X-rays. Results show that the proposed hybrid model more suitable for COVID-19 detection and achieve the highest recognition accuracy on both the datasets.


Sign in / Sign up

Export Citation Format

Share Document