scholarly journals Accessory pathway analysis using a multimodal deep learning model

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Nishimori ◽  
Kunihiko Kiuchi ◽  
Kunihiro Nishimura ◽  
Kengo Kusano ◽  
Akihiro Yoshida ◽  
...  

AbstractCardiac accessory pathways (APs) in Wolff–Parkinson–White (WPW) syndrome are conventionally diagnosed with decision tree algorithms; however, there are problems with clinical usage. We assessed the efficacy of the artificial intelligence model using electrocardiography (ECG) and chest X-rays to identify the location of APs. We retrospectively used ECG and chest X-rays to analyse 206 patients with WPW syndrome. Each AP location was defined by an electrophysiological study and divided into four classifications. We developed a deep learning model to classify AP locations and compared the accuracy with that of conventional algorithms. Moreover, 1519 chest X-ray samples from other datasets were used for prior learning, and the combined chest X-ray image and ECG data were put into the previous model to evaluate whether the accuracy improved. The convolutional neural network (CNN) model using ECG data was significantly more accurate than the conventional tree algorithm. In the multimodal model, which implemented input from the combined ECG and chest X-ray data, the accuracy was significantly improved. Deep learning with a combination of ECG and chest X-ray data could effectively identify the AP location, which may be a novel deep learning model for a multimodal model.

Author(s):  
Jonathan Stubblefield ◽  
Mitchell Hervert ◽  
Jason Causey ◽  
Jake Qualls ◽  
Wei Dong ◽  
...  

AbstractOne of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We evaluated ER patient classification for cardiac and infection causes with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. We also conducted clinical feature importance analysis and identified the most important clinical features for ER patient classification. This model can be upgraded to include a SARS-CoV-2 specific classification with COVID-19 patients data. The current model is publicly available with an interface at the web link: http://nbttranslationalresearch.org/.Data statementThe clinical data and chest x-ray image data for this study were collected and prepared by the residents and researchers of the Joint Translational Research Lab of Arkansas State University (A-State) and St. Bernards Medical Center (SBMC) Internal Medicine Residency Program. As data collection is on-going for the project stage-II of clinical testing, raw data is not currently available for data sharing to the public.EthicsThis study was approved by the St. Bernards Medical Center’s Institutional Review Board (IRB).


2021 ◽  
Author(s):  
Ritika Nandi ◽  
Manjunath Mulimani

Abstract In this paper, a hybrid deep learning model is proposed for the detection of coronavirus from chest X-ray images. The hybrid deep learning model is a combination of ResNet50 and MobileNet. Both ResNet50 and MobileNet are light Deep Neural Networks (DNNs) and can be used with low hardware resource-based Personal Digital Assistants (PDA) for quick detection of COVID-19 infection. The performance of the proposed hybrid model is evaluated on two publicly available COVID-19 chest X-ray datasets. Both datasets include normal, pneumonia and coronavirus infected chest X-rays. Results show that the proposed hybrid model more suitable for COVID-19 detection and achieve the highest recognition accuracy on both the datasets.


2021 ◽  
Vol 7 ◽  
pp. e551
Author(s):  
Nihad Karim Chowdhury ◽  
Muhammad Ashad Kabir ◽  
Md. Muhtadir Rahman ◽  
Noortaz Rezoana

The goal of this research is to develop and implement a highly effective deep learning model for detecting COVID-19. To achieve this goal, in this paper, we propose an ensemble of Convolutional Neural Network (CNN) based on EfficientNet, named ECOVNet, to detect COVID-19 from chest X-rays. To make the proposed model more robust, we have used one of the largest open-access chest X-ray data sets named COVIDx containing three classes—COVID-19, normal, and pneumonia. For feature extraction, we have applied an effective CNN structure, namely EfficientNet, with ImageNet pre-training weights. The generated features are transferred into custom fine-tuned top layers followed by a set of model snapshots. The predictions of the model snapshots (which are created during a single training) are consolidated through two ensemble strategies, i.e., hard ensemble and soft ensemble, to enhance classification performance. In addition, a visualization technique is incorporated to highlight areas that distinguish classes, thereby enhancing the understanding of primal components related to COVID-19. The results of our empirical evaluations show that the proposed ECOVNet model outperforms the state-of-the-art approaches and significantly improves detection performance with 100% recall for COVID-19 and overall accuracy of 96.07%. We believe that ECOVNet can enhance the detection of COVID-19 disease, and thus, underpin a fully automated and efficacious COVID-19 detection system.


Automatika ◽  
2021 ◽  
Vol 62 (3-4) ◽  
pp. 397-406
Author(s):  
Mohammad Farukh Hashmi ◽  
Satyarth Katiyar ◽  
Abdul Wahab Hashmi ◽  
Avinash G. Keskar

Sign in / Sign up

Export Citation Format

Share Document