DDA-Net:Unsupervised Cross-modality Medical Image Segmentation via Dual Domain Adaptation

Author(s):  
Xuesheng Bian ◽  
Xiongbiao Luo ◽  
Cheng Wang ◽  
Weiquan Liu ◽  
Xiuhong Lin
2021 ◽  
pp. 201-210
Author(s):  
Guodong Zeng ◽  
Till D. Lerch ◽  
Florian Schmaranzer ◽  
Guoyan Zheng ◽  
Jürgen Burger ◽  
...  

Author(s):  
Cheng Chen ◽  
Qi Dou ◽  
Hao Chen ◽  
Jing Qin ◽  
Pheng-Ann Heng

This paper presents a novel unsupervised domain adaptation framework, called Synergistic Image and Feature Adaptation (SIFA), to effectively tackle the problem of domain shift. Domain adaptation has become an important and hot topic in recent studies on deep learning, aiming to recover performance degradation when applying the neural networks to new testing domains. Our proposed SIFA is an elegant learning diagram which presents synergistic fusion of adaptations from both image and feature perspectives. In particular, we simultaneously transform the appearance of images across domains and enhance domain-invariance of the extracted features towards the segmentation task. The feature encoder layers are shared by both perspectives to grasp their mutual benefits during the end-to-end learning procedure. Without using any annotation from the target domain, the learning of our unified model is guided by adversarial losses, with multiple discriminators employed from various aspects. We have extensively validated our method with a challenging application of crossmodality medical image segmentation of cardiac structures. Experimental results demonstrate that our SIFA model recovers the degraded performance from 17.2% to 73.0%, and outperforms the state-of-the-art methods by a significant margin.


2020 ◽  
Vol 65 ◽  
pp. 101766 ◽  
Author(s):  
Yingda Xia ◽  
Dong Yang ◽  
Zhiding Yu ◽  
Fengze Liu ◽  
Jinzheng Cai ◽  
...  

Author(s):  
Danbing Zou ◽  
Qikui Zhu ◽  
Pingkun Yan

Domain adaptation aims to alleviate the problem of retraining a pre-trained model when applying it to a different domain, which requires large amount of additional training data of the target domain. Such an objective is usually achieved by establishing connections between the source domain labels and target domain data. However, this imbalanced source-to-target one way pass may not eliminate the domain gap, which limits the performance of the pre-trained model. In this paper, we propose an innovative Dual-Scheme Fusion Network (DSFN) for unsupervised domain adaptation. By building both source-to-target and target-to-source connections, this balanced joint information flow helps reduce the domain gap to further improve the network performance. The mechanism is further applied to the inference stage, where both the original input target image and the generated source images are segmented with the proposed joint network. The results are fused to obtain more robust segmentation. Extensive experiments of unsupervised cross-modality medical image segmentation are conducted on two tasks -- brain tumor segmentation and cardiac structures segmentation. The experimental results show that our method achieved significant performance improvement over other state-of-the-art domain adaptation methods.


Sign in / Sign up

Export Citation Format

Share Document